Journal of Physical Studies 23(3), Article 3901 [15 pages] (2019)
DOI: https://doi.org/10.30970/jps.23.3901

DEVELOPMENT OF EQUIPMENT AND TECHNIQUES OF THE POLARIMETRIC METHOD AS AN EFFECTIVE METHOD OF ASTROPHYSICAL RESEARCH. I

S. V. Kolesnikov{1,2}

{1}Odessa I. I. Mechnikov National University
{2}Odessa National Maritime University

This review, apart from mentioning some poorly known historical facts, briefly outlines the methods of measuring polarization, which were successfully used before polarimetry came into stellar astrophysics. At that time, the registration was carried out using a photoemulsion, giving the opportunity to obtain information about the spatial distribution, including the polarization parameters. Changing radiation receivers to photoelectric photometry (PhEP) has undoubtedly been a very progressive step for astrophysical observations, on the one hand, due to the higher quantum efficiency and, on the other, due to the ability to digitize the results. This, in turn, strongly encouraged the development of statistical methods in observational astrophysics. The recent wide usage of CCD receivers allows regarding PhEP as their ``one-pixel'' analogues, and successfully use the mathematical statistics apparatus previously developed for FEP. On the other hand, CCD is not only an even more sensitive receiver; it also has a natural panorama. The following methods and the cited results obtained using them reveal the meaning of the ideas that have been successfully used. This can be of great help, for example, in the development of a new device in modern conditions, when it is extremely important to properly evaluate the features of its opto-mechanical scheme, since its change is usually not possible without the creation of a new device. From the other point of view, by understanding the instrumental limitations of our predecessors, we can more quickly identify their shortcomings, which significantly influences the formation of today's agendas in various fields of astronomical polarimetry. The last part of the paper briefly describes the methods and their results, which allowed the Crimean Astrophysical Observatory to occupy a top leading position in the world astronomical polarimetry. The methods and instruments of polarimetry that have been used productively in the Crimean school in the last quarter of the 20th and the beginning of the 21st century are described in the second article of this series, [J. Phys. Stud. 23, No. 4, in press (2019)].

PACS number(s): 95.75.Hi

pdf


References
  1. S. Chandrasekhar, Astrophys. J. 103, 351 (1946);
    CrossRef
  2. J. Walker, Sci. Am. 238, 132 (1978); https://www.jstor.org/stable/24955621
  3. E. Bartholinus, Experimenta Crystalli Islandici disdiaclastici, quibus mira et insolita refractio detegitur (Hafnia, 1669).
  4. C. Huyghens Traité de la lumière (Pierre vander Aa, Leide, 1690).
  5. I. Newton, Opticks (G. Bell & Sons, Ltd., London 1931).
  6. E. L. Malus, Mém. Phys. Chim. Soc. D'Arcueil 2, 143 (1809).
  7. E. L. Malus, Nouv. Bull. Soc. Philomat. 1, 266 (1809).
  8. E. L. Malus, Théorie de la double réfraction de la lumière dans les substances cristallisées (Paris, 1810);
    CrossRef
  9. E. L. Malus, Op. cit., Partie II, p. 105.
  10. E. L. Malus, Op. cit., Partie II, p. 112.
  11. E. L. Malus, Op. cit., Partie II, p. 142.
  12. М. Борн, Э. Вольф, Основы оптики (Наука, Москва 1970).
  13. Wm. A. Rense, J. M. Jackson, B. Todd, J. Geophys. Res. 58, 369 (1953);
    CrossRef
  14. R. Michard, A. Dollfus, J. C. Pecker, M. Laffineur, M. D'Azambuja, Ann. Astrophys. 17, 320 (1954).
  15. V. G. Fesenkov, Dokl. AN SSSR 3 N647 (1934); див. також В. Г. Фесенков Солнце и Солнечная система: Избранные труды (Наука, Москва, 1976).
  16. C. Leinert, H. Link, E. Pitz, Astron. Astrophys. 30, 411 (1974).
  17. C. Leinert, I. Richter, E. Pitz, B. Plank, Astron. Astrophys. 103, 177 (1981).
  18. C. Leinert, H. Link, E. Pitz, in Planets, Stars and Nebulae Studied with Photopolarimetry (University of Arizona Press, Tucson, 1974), p. 766;
    CrossRef
  19. A. Behr, H. Siedentopf, Z. Astrophys. 32, 19 (1953).
  20. V. I. Moroz, Astron. Zh. 33, 717 (1956).
  21. J. S. Hall, A. H. Mikesell, Polarization of light in the galaxy as determined from observations of 551 early-type stars (United States Naval Observatory, Washington, 1950).
  22. N. M. Shakhovskoi N. A. Dimov, Izv. KrAO 27, 291 (1962).
  23. J. L. Weinberg, Ann. Astrophys, 27, 718 (1964).
  24. R. Dumont, F. Sanchez, Astron. Astrophys. 38, 397 (1975).
  25. J. L. Weinberg, PhD thesis, Univ. of Colorado (1963).
  26. V. G. Fesenkov, Sov. Astron. 3, 1007 (1959).
  27. V. G. Fesenkov, Sov. Astron. 4, 741 (1961).
  28. M. M. Pospergelis, Sov. Astr. 9, 313 (1965).
  29. W. A. Hiltner, Science 109, 165 (1949);
    CrossRef
  30. J. S. Hall, Science 109, 167 (1949);
    CrossRef
  31. V. A. Dombrovsky, Dokl. AN Arm. SSR 10, 199 (1949).
  32. W. A. Hiltner, Astron. J. 57, 13 (1952);
    CrossRef
  33. У. Шерклифф, Поляризованный свет. Получение и использование (Мир, Москва, 1965).
  34. Y. S. Efimov, Izv. KrAO 37, 251 (1967).
  35. O. I. Bugaenko, L. S. Galkin, A. V. Morozhenko, Sov. Astron. 15, 290 (1971).
  36. L. A. Bugaenko, O. I. Bugaenko, V. D. Krugov, V. G. Parusimov, Astrom. Astrofiz. 1, (1968).
  37. Y. S. Efimov, in Non-Periodic Phenomena in Variable Stars, edited by L. Detre (Springer, Dordrecht 1969), p. 169;
    CrossRef
  38. Y. S. Efimov, Izv. KrAO, 41--42, 357, 1970.
  39. N. M. Shakhovskoi, Y. S. Efimov, Izv. KrAO, 45, 90 (1972).
  40. Y. S. Efimov, N. M. Shakhovskoi, Izv. KrAO 45, 111 (1972).
  41. Методы исследования переменных звёзд, под ред. В. Б. Никонова (Москва, Наука, 1971).
  42. I. Appenzeller, Publ. Astron. Soc. Pac. 79(467), 136 (1967);
    CrossRef
  43. D. Clarke Stellar Polarimetry (Verlag GmbH & Co. KGaA, Weinheim 2010);
    CrossRef
  44. N. M. Shakhovskoi, Sov. Astron. 6, 587 (1963).
  45. N. M. Shakhovskoi, Sov. Astron. 8, 833 (1965).
  46. N. M. Shakhovskoi, Astron. Circ. (USSR) 228, 16 (1962).
  47. N. M. Shakhovskoi, Sov. Astron. 7, 806 (1963).
  48. E. A. Dibai, N. M. Shakhovskoi, Sov. Astron. 10, 1059 (1967).
  49. Y. S. Efimov, Sov. Astron. Lett. 5, 352 (1979).
  50. J. R. P. Angel, R. Novick, P. Vanden Bout, R. Wolff, Phys. Rev. Lett. 22, 861 (1969);
    CrossRef
  51. J. R. P. Angel, Astrophys. J. 158, 219 (1969);
    CrossRef
  52. N. S. Nikulin, V. M. Kuvshinov, A. B. Severny, Astrophys. J. 170, L53 (1971);
    CrossRef
  53. Yu. N. Gnedin, O. S. Shulov, Astron. Tsirkulyar 658, 1 (1971); див. також JETP Lett. 14, 348 (1971).
  54. A. Z. Dolginov, Yu. N. Gnedin, N. A. Silant'ev, Astrophys. Lett. 13, 85 (1973).
  55. J. C. Kemp, R. D. Wolstencroft, Astrophys. J. 173, L113 (1972);
    CrossRef
  56. R. M. E. Illing, P. G. Martin, Astrophys. J. 176, L113 (1972);
    CrossRef
  57. J. Kemp, Nature (Phys. Sci.) 240, 103, (1972);
    CrossRef
  58. T. Gehrels, Astrophys. J. 173, L23 (1972);
    CrossRef
  59. J. J. Michalsky, J. B. Swedlund, R. W. Avery, Nature 254, 39 (1975);
    CrossRef
  60. A. B. Severny, V. M. Kuvshinov, Astrophys. J. 200, L13, (1975);
    CrossRef
  61. J. M. Bonnet-Bidaud et al., Astron. Astrophys. 354, 1003 (2000).
  62. A. V. Halevin, N. M. Shakhovskoy, I. L. Andronov, S. V. Kolesnikov, Astron. Astrophys. 394, 171 (2002);
    CrossRef
  63. P. A. Mason et al., Mon. Notices Royal Astron. Soc. 295, 511 (1998);
    CrossRef
  64. I. L. Andronov et al., Centr. Eur. J. Phys. 6, 385 (2008);
    CrossRef
  65. V. V. Breus et al., J. Phys. Stud. 17, 3901 (2013).
  66. K. A. Antonyuk et al., Astrophys. Bull. 71, 475 (2016);
    CrossRef
  67. A. F. Valeev et al., Astrophys. Bull. 72, 44 (2017);
    CrossRef
  68. S. V. Zaitsev, N. N. Kiselev, V. K. Rosenbush, S. V. Kolesnikov, Kinemat. Phys. Celest. Bodies 31, 281 (2015);
    CrossRef
  69. S. V. Zaitsev, N. N. Kiselev, V. K. Rosenbush, S. V. Kolesnikov, K. A. Antonyuk, Kinemat. Phys. Celest. Bodies 30, 155 (2014);
    CrossRef
  70. V. K. Rosenbush et al., Icarus 201, 655 (2009);
    CrossRef
  71. V. K. Rosenbush et al., Sol. Syst. Res. 40, 230 (2006);
    CrossRef
  72. V. Rosenbush et al., J. Quant. Spectrosc. Radiat. Transfer 110, 1719 (2009);
    CrossRef
  73. N. N. Kiselev et al., Earth Planets Space 65, 12 (2013);
    CrossRef
  74. K. Jockers et al., Astron. Astrophys. 441, 773, (2005);
    CrossRef
  75. S. V. Kolesnikov, I. L. Andronov, ASP Conf. Ser., 510, 502 (2017).
  76. I. L. Andronov et al., ASP Conf. Ser., 511, 43 (2017).
  77. I. B. Vavilova et al., Kinem. Phys. Celest. Bodies 28, 85 (2012);
    CrossRef
  78. I. L. Andronov, J. Phys. Stud. 12, 2902 (2008).
  79. S. V. Kolesnikov, J. Phys. Stud. 23, in press (2019).