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Four kink (antikink) solutions for the Newell–Whitehead–Segel equation are constructed by the
Hirota method for the special but general enough values of its parameters. The topological charges
for these solutions are calculated. A possibility of the spontaneous symmetry breaking is pointed
out.
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I. INTRODUCTION

The nonlinear Newell–Whitehead–Segel (NWS) equa-
tion was introduced in papers [1,2] for studying the prob-
lems of fluid mechanics. It is well known that this equa-
tion is widely used in studying various mechanical, chem-
ical and biological problems [3]. For (1+1)-dimensional
case, it may be written in the form

ut = duxx + au− buq, (1)

where ut = ∂u
∂t , uxx = ∂2u

∂x2 , d, a and b are real numbers,
q is a real, positive integer.

The have been many attempts to construct exact
and approximative solutions to this equation analyti-
cally. In [4], an extension of amplitude NWS equation
is considered. By the renormalization group method,
it is shown that this equation is covariant under arbi-
trary rotations. A dispersive generalization of the NWS
equation is used in [5] as an equation for almost one-
dimensional traveling-wave patterns. The homotopy per-
turbation method is applied to obtain the solution to
the NWS equation in a closed form [6]. The Adomian
decomposition method is used in [7] to find the approx-
imate solution to the NWS equation for different coeffi-
cients. It is shown that this method leads to better results
in comparison with the homotopy perturbation method.
In [8], for two NWS equations this method was compared
with the modified differential transform method. It was
demonstrated that the Adomian transform method re-
quires more computational work. The solutions of the
NWS equations were constructed by He’s variational it-
eration method in [9]. The perturbation iteration trans-
form method is used in [10] for the solution of the NWS
equation. The advantages of this method in comparison
with some other methods are demonstrated. Not only
was the construction of a new solution a subject of study-
ing, but the properties of a class of the NWS equations
are also considered with Lie and nonclassical symmetry
in [11]. It allowed to establish the criteria of reducibility
of the NWS equations with variable coefficients to their
constant coefficient counterparts.

A specific feature of Eq.(1) is that it is not possible to
construct its localized traveling-wave solution for the ar-
bitrary values of its parameters [5]. In this paper, the four
new kink and/or antikink solutions of the NWS equation
are obtained for the case when d, a, b are real positive
numbers and q = 3. This is a general enough case (only q
has a special value but, as it is demonstrated below, this
is a natural value for the method applied). To construct
these solutions, the direct Hirota method is used [12,13].
In Sec. II, this method is described in brief. In Sec. III,
the new solutions are constructed in an explicit form. In
Sec. IV, some concluding remarks are presented.

II. METHOD OF SOLUTION

Let us consider the NWS equation Eq.(1)when d, a, b
are real positive numbers. Let us introduce a new func-
tion by the Cole–Hopf transformation

u(x, t) = σ
Fx

F
, (2)

where F = F (x, t) is a new unknown function, σ is a
constant parameter to be determined below, Fx = ∂F

∂x .
By substituting Eq.(2) into Eq.(1), the latter equation
may be written in the form

σ
Fxt

F
− σ

FxFt

F 2
− σd

Fxxx

F
+ 3σd

FxFxx

F 2

− 2σd
F 3

x

F 3
− σa

Fx

F
+ bσq F q

x

F q
= 0. (3)

As the purpose of this paper is to construct a special
solution for Eq.(1), then it is possible to introduce a spe-
cial condition for Eq.(3). This condition may be written
as

bσq F q
x

F q
− 2σd

F 3
x

F 3
= 0. (4)

It is clear that for Eq.(4) the value q = 3 is a natural.
For this value of q from Eq.(4) the following two values
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of parameter σ may be obtained

σ = ±
√

2d

b
. (5)

Now Eq. (3) reduces to the bilinear equation of the form

FxtF − FxFt − dFxxxF + 3dFxFxx − aFxF = 0. (6)

The next step is a usual one for the Hirota method.
Let us represent F (x, t) as a formal series

F = 1 + εf1 + ε2f2 + ε3f3 + . . . , (7)

where fi, i = 1, 2, 3, . . . are new unknown functions, ε not
necessarily a small constant. By substituting Eq. (7) in-
to Eq. (6) and equating the coefficients to zero for each
power of ε, an infinite system of linear partial differential
equations for the functions fi will be obtained. The first
three equations of this system may be written as

f1,xt − df1,xxx − af1,x = 0, (8)

f2,xt − df2,xxx − af2,x = −3df1,xf1,xx + f1,xf1,t, (9)

f3,xt − df3,xxx − af3,x = f1,xf2,t + f1,tf2,x − 3df1,xf2,xx

− 3df1,xxf2,x − f1f2,xt + df1f2,xxx + af1f2,x. (10)

For every i the function fi is determined by the pre-
vious functions and their derivatives only. Only the first
equation of this system is homogeneous, the others are
not. If the Hirota method may be applied to solve some
nonlinear equation, the problem of an exact truncation
of the series (7) is not essential.

III. ONE-KINK SOLUTIONS

To construct a one-kink solution, Eq. (8) and Eq. (9)
are needed. Let us represent function f1 in the form

f1(x, t) = exp(k1x− ω1t + η0
1), (11)

where k1, ω1 and η0
1 are the parameters of the solution to

be determined. η0
1 is an initial phase shift, and without

the loss of generality we may equal it to zero. Now the
one-kink solution may be written as

u(x, t) = σ
f1,x

1 + f1
. (12)

By substituting Eq. (11) into Eq. (8), we can obtain
the following relation between k1 and ω1:

ω1 = −dk2
1 − a. (13)

This is a dispersion relation. The second linearly inde-
pendent equation for k1 and ω1 may be obtained by sub-
stituting Eq. (11) into the right-hand side of Eq. (9) and
equating it to zero. This equation is of the form

ω1 = −3dk2
1. (14)

The exact values of parameters k1 and ω1 may be found
from these two last equations:

k1 = ±
√

a

2d
. (15)

For k1 of both signs

ω1 = −3a

2
. (16)

Now the four one-kink(antikink) solutions for Eq. (1)
may be written as:

1) σ =
√

2d
b , k1 =

√
a
2d , ω1 = − 3a

2

u(x, t) =
1
2

√
a

b

{
1 + tanh

[
1
2

(√
a

2d
x +

3a

2
t

)]}
, (17)

2) σ =
√

2d
b , k1 = −

√
a
2d , ω1 = − 3a

2

u(x, t) = −1
2

√
a

b

{
1 + tanh

[
1
2

(
−

√
a

2d
x +

3a

2
t

)]}
,

(18)

3) σ = −
√

2d
b , k1 =

√
a
2d , ω1 = − 3a

2

u(x, t) = −1
2

√
a

b

{
1 + tanh

[
1
2

(√
a

2d
x +

3a

2
t

)]}
,

(19)

4) σ = −
√

2d
b , k1 = −

√
a
2d , ω1 = − 3a

2

u(x, t) =
1
2

√
a

b

{
1 + tanh

[
1
2

(
−

√
a

2d
x +

3a

2
t

)]}
.

(20)
It is easy to verify by using direct substitution that

Eqs. (17)–(20) are the solutions of Eq. (1). If one of the
solutions is constructed, the others may be obtained due
to the symmetries of the Eq. (1): x→ −x and u→ −u.

IV. CONCLUSION

The four solutions of Eq. (1) are constructed. Eq. (17)
describes an usual kink solution and Eq. (20) describes
the corresponding antikink solution. As for the other two
solutions, by analogy with the approach used in the soli-
ton theory, they may be called a dark kink solution [Eq.
(19)] and a dark antikink solution [Eq. (18)]. Eq. (1) con-
tains the damping term, nevertheless the form and veloc-
ity of propagation for every solution (17)–(20) are con-
served. It means that all these solutions are stable [14]. If
the conditions under which these solutions are obtained
vary, the localized traveling-wave solution cannot always
be constructed but the oscillating solutions appear.

All the solutions (17)–(20) are not static. If we consid-
er a static case (ut = 0), then Eq. (1) takes the form of
the static equation of φ4-theory:

uxx +
a

d
u− b

d
u3 = 0. (21)
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The potential of such a model equals to zero at two min-
ima: u = ±

√
a
b . Eq. (21) has two solutions:

u(x) = ±
√

a

b
tanh

[√
a

2d
(x− x0)

]
. (22)

In this equation, “+” corresponds to the kink solution, “-
” corresponds to the antikink solution. x0 is the position
of the solution at an initial moment of time. Hence, the
analysis of topological charges Q for Eq. (1) in a static
case is similar to such an analysis for φ4-theory [15].

If we consider a non-static case (ut 6= 0), then Eq. (1)
describes a non-conservative system (it contains a dissi-
pative term). Nevertheless, the topological charges may
be determined as well. For us it is important that the
solutions with the same topological charge belong to the
same topological sector. Let us determine the topological
charge according to [15]:

Q = 2

√
b

a
[u(x =∞)− u(x = −∞)] . (23)

As a result, one obtains that kink and dark antikink pos-
sess the topological charge Q = 2 and dark kink and
antikink possess the topological charge Q = −2. This
result indicates that the potential of NWS-equation has
two minima. It also indicates the possibility of the spon-
taneous symmetry breaking for the system described by
NWS-equation.

In the paper the solutions in a form of travelling waves
are constructed. It is possible to reduce Eq. (1) to an or-
dinary differential equation. This may simplify the cal-
culations from the very beginning. Nevertheless, our ap-
proach is more prospective for the purpose of construct-
ing the solutions corresponding to the coupled states. An
attempt to construct solutions corresponding to a cou-
pled state of two kinks (two antikinks or kink-antikink)by
the Hirota method faces some problems. For this purpose
a function F = 1 + f1 + f2 is needed. Hence, function f2

should be determined. It has the form

f2 = exp (η1 + η2 + A12) , (24)

where A12 = (k1−k2)
2

(k1+k2)2
, ηi = kix − ωit + η0

i , i = 1, 2. For
the problem under consideration, parameters k1 and k2

have exact and fixed values. They equal each other up
to a sign. That is why term A12 is equal to 0 or ∞.
When A12 = 0 we have not a coupled state but a usu-
al sum of two single objects (for example, like kinks).
When A12 = ∞, the contribution of f2 to the coupled
state cannot be calculated. By using a generalization of
the Hirota method [16], it is possible to construct the
solution similar to coupled state of kinks or antikinks.
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РОЗВ’ЯЗКИ КIНКОВОГО ТИПУ ДЛЯ РIВНЯННЯ НЬЮЕЛЛА–ВАЙТГЕДА–СЕҐЕЛА

М. Князєв
Бiлоруський нацiональний технiчний унiверситет,
просп. Незалежностi, 65, Мiнськ, 220013, Бiлорусь

Для рiвняння Ньюелла–Вайтгеда–Сеґела за методом Гiроти побудовано чотири розв’язки у виглядi кiн-
кiв (aнтiкiнкiв) для спецiальних, але досить загальних значень параметрiв. Обчислено топологiчнi заряди,
що вiдповiдають цим розв’язкам. Показано можливiсть спонтанного порушення симетрiї в системi, яку опи-
сує розглянуте рiвняння.
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