Journal of Physical Studies 23(4), Article 4001 [7 pages] (2019)
DOI: https://doi.org/10.30970/jps.23.4001

EXPERIMENTAL SETUP FOR MEASURING THE ISOBARIC THERMAL CONDUCTIVITY OF MOLECULAR CRYSTALS

O. I. Pursky, O. V. Romanenko, R. A. Rasulov, L. M. Mazur

Kyiv National University of Trade and Economics,
19, Kioto St., Kyiv, UA-02156, Ukraine

The paper describes an experimental setup for the measurement of the isobaric thermal conductivity of molecular crystals in the temperature range from 80 K to 300 K. A scheme of the developed experimental setup for measuring the thermal conductivity by the linear-flow steady-state method under saturated vapor pressures has been presented. A modified heat potentiometer method with one thermometer was used, which allowed us to minimize the error in the estimation of the thermal conductivity due to the uncontrollable heat flows and different calibration of thermometers. The noncontrollable heat flows from thermal radiation were reduced considerably with a radiation shield on which the temperature field of the measuring cell was reproduced using a set of thermocouples and precision heat controllers. The total systematic error in the measurement of the thermal conductivity does not exceed 5\%.

PACS number(s): 07.20.Mc, 66.70.+f

pdf


References
  1. V. G. Manzhelii, Y. A. Freiman, Physics of Cryocrystals (Woodbury, AIP Press, New York, 1997).
  2. D. G. Cahill, S. K. Watson, R. O. Pohl, Phys. Rev. B 46, 6131 (1992);
    CrossRef
  3. V. Konstantinov, V. Sagan, V. Revyakin, A. Karachevtseva, O. Pursky, Cent. Eur. J. Phys. 12, 654, (2014);
    CrossRef
  4. O. Pursky, V. Konstantinov, V. Sysoev, Phys. Solid State 52, 148 (2010);
    CrossRef
  5. V. Konstantinov, V. Revjakin, V. Sagan, O. Pursky, V. Sysoev, J. Exp.Theor. Phys. 112, 220 (2011);
    CrossRef
  6. V. Konstantinov, Low Temp. Phys. 29, 422 (2003) [Fiz. Nizk. Temp. 29, 567 (2003)];
    CrossRef
  7. O. Pursky, V. Konstantinov, Low Temp. Phys. 33, 584 (2007) [Fiz. Nizk. Temp. 33, 765 (2007)];
    CrossRef
  8. V. Konstantinov, V. Sagan, V. Revyakin, A. Zvonaryova, O. Pursky, Low Temp. Phys. 39, 473 (2013) [Fiz. Nizk. Temp. 39, 606 (2013)];
    CrossRef
  9. O. Pursky, N. Zholonko, V. Konstantinov, Low Temp. Phys. 26, 278 (2000) [Fiz. Nizk. Temp. 26, 380 (2000)];
    CrossRef
  10. O. Pursky, V. Konstantinov, Cent. Eur. J. Phys. 4, 210, (2006);
    CrossRef
  11. R. F. Barron, G. F. Nellis, Cryogenic Heat Transfer (CRC Press, Boca Raton, 2016).
  12. R. Berman, Thermal Conduction in Solids (Clarendon Press, Oxford, 1976).
  13. Thermal Conductivity: Theory, Properties, and Applications, edited by T. M. Tritt (Springer, New York, 2004).
  14. T. Antsygina et al., Low Temp. Phys. 18, 283 (1992) [Fiz. Nizk. Temp. 18, 417 (1992)].
  15. F. Clayton, D. Batchelder, J. Phys. Chem. 6, 1213 (1973);
    CrossRef
  16. J. Ekin, Experimental Techniques for Low-temperature Measurements: Cryostat design, material properties and superconductor critical-current testing (Oxford University Press, Oxford, 2006).
  17. R. A. Miller, M. A. Kuczmarski, Method for Measuring Thermal Conductivity of Small Samples Having Very Low Thermal Conductivity (BiblioGov, Cleveland, 2013).
  18. I. Kikoin, Tables of Physical Quantities (Mir, Moscow, 1978).
  19. V. Konstantinov, V. Manzhelii, V. Revyakin, S. Smirnov, Low Temp. Phys. 21, 78 (1995) [Fiz. Nizk. Temp. 21, 102 (1995)].
  20. R. Ross, P. Andersson, B. Sunquist, G. Backstrom, Rep. Progr. Phys. 47, 1347 (1984).