Journal of Physical Studies 23(4), Article 4401 [7 pages] (2019)
DOI: https://doi.org/10.30970/jps.23.4401

EFFECT OF NOISE AND PIXEL SIZE ON THE WAVEFRONT GENERATED BY AMPLITUDE HOLOGRAMS

A. A. Goloborodko{1,2}

{1}OpenSoft LTD, 1, Chornomorska St., office 301, Kyiv, UA-04655, Ukraine,
{2}Taras Shevchenko National University of Kyiv,
64/13, Volodymyrska St., Kyiv, UA-01601, Ukraine
e-mail: a.a.goloborodko@gmail.com

The possibilities of wavefront generation by amplitude holograms are theoretically and experimentally investigated. Holograms could be generated in any PC using a MATLAB program developed by the author. The wavefronts of the generated holograms are obtained experimentally and confirmed by theoretical calculations both qualitatively and quantitatively. The errors of wavefront restoration are obtained on the example of the first 12 Zernike aberrations. The effect of the pixel size and pixelate noise on hartmanogramms of the generated wavefront and restored wavefronts are experimentally investigated.

PACS number(s): 42.15.Dp, 42.40.Jv, 42.15.Fr

pdf


References
  1. J. W. Hardy, Adaptive Optics for Astronomical Telescopes (Oxford University Press, Oxford, 1998).
  2. R. Davies, M. Kasper, Ann. Rev. Astron. Astrophys. 50, 305 (2012);
    CrossRef
  3. S. Manzanera, C. Canovas, P. M. Prieto, P. Artal, Opt. Express 16, 7748 (2008);
    CrossRef
  4. V. P. Lukin, L. A. Bol'basova, J. Phys. Conf. Ser. 1096, 012121 (2018);
    CrossRef
  5. V. Buchenko, A. Goloborodko, V. Lendel, O. Oberemok, J. Nano- Electron. Phys. 7, 03023 (2014).
  6. Adaptive Optics for Astronomy, edited by D. Alloin, J.-M. Mariotti (KluwerAcademic Publishers, 1994).
  7. S. A. Benton, V. M. Bove, Holographic Imaging (John Wiley & Sons, Inc., 2008).
  8. J.-Y. Son, D. Podanchuk, V. Dan'ko, K.-D. Kwak, Opt. Eng. 42, 3389 (2003);
    CrossRef
  9. D. Podanchuk, A. Goloborodko, M. Kotov, D. Petriv, Ukr. J. Phys. 60, 10 (2015);
    CrossRef
  10. A. A. Goloborodko, DOE generator (Matlab project) (2018);
    CrossRef
  11. S. Weddell, A. Lambert, Appl. Opt. 53, 8205 (2014);
    CrossRef
  12. J. W. Goodman, Introduction to Fourier Optics (The McGraw-HillCompanies, Inc., 1996).
  13. Principles of Optics, edited by M. Born, E. Wolf (Cambridge University, 2001).
  14. R. D. Guenther, Modern Optics (John Wiley & Sons, 1990).
  15. R. J. Noll, J. Opt. Soc. Am. 66, 207 (1976);
    CrossRef
  16. Adaptive Optics for Vision Science, edited by J. Porter, H. M. Queener, J. E. Lin, K. Thorn, A. Awwal (John Wiley & Sons, Ltd, 2006).
  17. R. W. Gray, C. Dunn, K. P. Thompson, J. P. Rolland, Opt. Express 20, 16436 (2012);
    CrossRef
  18. V. Lakshminarayanan, A. Fleck, J. Mod. Opt. 58, 1678 (2011);
    CrossRef
  19. L. N. Thibos, X. Hong, A. Bradley, R. A. Applegate, J. Vision 4(4), 329 (2004);
    CrossRef
  20. A. V. Kovalenko, V. N. Kurashov, Radioelectron. Commun. Syst. 47(7), 54 (2004); http://radioelektronika.org/article/view/S0735272704070118
  21. M. Siemons, C. N. Hulleman, R. Ø. Thorsen, C. S. Smith, S. Stallinga, Opt. Express 26, 8397 (2018);
    CrossRef
  22. C. Neipp, I. Pascual, A. Beléndez, Appl. Opt. 41, 4092 (2002);
    CrossRef
  23. A. A. Goloborodko, M. M. Kotov, V. N. Kurashov, D. V. Podanchuk, Opt. Eng. 55, 121710 (2016);
    CrossRef
  24. A. A. Goloborodko, DOE generator v 2.0 (2017); https://www.researchgate.net/publication/312472533
  25. A. V. Kuzmenko, P. V. Yezhov, Appl. Opt. 46, 7392 (2007);
    CrossRef
  26. P. V. Yezhov, A. V. Kuzmenko, J.-T. Kim, T. N. Smirnova, Opt. Express 20, 29854 (2012);
    CrossRef
  27. S. Thomas et al., Mon. Not. R. Astron. Soc. 371, 323 (2006);
    CrossRef
  28. Y. Zhang, W. Xu, S. Chen, J. Ge, F. Wan, Opt. Commun. 371, 76 (2016);
    CrossRef
  29. D. V. Podanchuk et al., Appl. Opt. 55, B150 (2016);
    CrossRef
  30. L. Seifert, J. Liesener, H. Tiziani, Opt. Commun. 216, 313 (2003);
    CrossRef