Journal of Physical Studies 23(4), Article 4602 [8 pages] (2019)
DOI: https://doi.org/10.30970/jps.23.4602

STRUCTURAL STUDY OF LIQUID AND AS-QUENCHED Al–Fe–Si ALLOYS

O. S. Muratov{1}, V. P. Kazimirov{1}, O. S. Roik{1}, O. M. Yakovenko{1}, V. E. Sokolskii{1}, Т. М. Міkа {2}, Ya. О. Kashirina{1}, S. M. Galushko{3}

{1} Taras Shevchenko National University of Kyiv,
{2} G. V. Kurdymov Institute for Metal Physics, Nat. Acad. Of Sci. of Ukraine,
{3} Pavlo Tychyna Uman State Pedagogical University

The short-range order in the liquid Al$_{70}$Fe$_{10}$Si$_{20}$, Al$_{70}$Fe$_{14}$Si$_{16}$, Al$_{76}$Fe$_{14}$Si$_{10}$ and Al$_{82}$Fe$_{14}$Si$_{4}$ alloys at 50-250$^\circ$C above the liquidus temperature has been studied by X-ray diffraction using MoK$\alpha$ radiation. The structure factors ($S(Q)$) and pair correlation functions ($g(r)$) were calculated from the scattering intensity according to the Faber-Ziman definition. The structure models of the investigated ternary alloys were reconstructed from experimental $S(Q)$ by means of the reverse Monte Carlo simulations. The analysis of the local atomic structure in RMC-models has been carried out using Voronoi-Delaunay diagrams. It has been shown that the structure of ternary Al-Fe-Si melts is determined mainly by the Al-Fe interactions. The Fe-Si interactions manifest themselves when the Si content increases. The replacement of Al by Si at transition from Al$_{82}$Fe$_{14}$Si$_{4}$ to Al$_{70}$Fe$_{14}$Si$_{16}$ liquid alloys leads to a reduction of the nearest-neighbour distance ($R_1$). On the experimental ($S(Q)$) and partial ($S_{\rm FeFe}(Q)$) structure factor curves of the liquid alloys a prepeak has been observed. The prepeak is the evidence of the medium-range order caused by the specific arrangement of Fe-centered atomic clusters. The real-space structural correlations ($R_p$) between these clusters are estimated to be in the range of 5.2 to 5.5 \AA\ and the correlation length ($L$) is from 10 to 16 \AA. The $S(Q)$ curves of the investigated ternary melts are characterized by the asymmetric shape of the second peak that is associated with an icosahedral short-range order in polytetrahedral clusters. It was discovered that an amorphous phase and a nanocrystalline Al phase have been formed in the melt-spun Al$_{70}$Fe$_{10}$Si$_{20}$ alloy. The annealing of the melt-spun Al$_{70}$Fe$_{10}$Si$_{20}$ ribbons causes the formation of $\beta$-Al$_{4,5}$FeSi and Si crystal phases.

PACS number(s): 61.05.cp, 61.20.-p, 61.20.Ja, 61.25.Mv, 61.43.Dq

pdf


References
  1. J. Jorstad et al., Int. J. Metalcast. 3, 13 (2009);
    CrossRef
  2. M. F. Kilicaslan et al., Met. Mater. Trans. 45, 1865 (2014);
    CrossRef
  3. S.P. Nikanorova et al., Mater. Sci. Eng. A 390, 63 (2005);
    CrossRef
  4. A. Inoue et al., J. Light Met. 1, 31 (2001);
    CrossRef
  5. Y. Kawazoe, Nonequilibrium Phase Diagrams of Ternary Amorphous Alloys. Vol. 37A (Springer-Verlag, Berlin/Heidel\-berg, 1997).
  6. R. O. Suzuki et al., J. Mater. Sci. 18, 1195 (1983);
    CrossRef
  7. R. A. Dunlap et al., J. Mater. Res. 1, 415 (1986);
    CrossRef
  8. A. Inoue et al., J. Mater. Sci. Lett. 6, 194 (1987);
    CrossRef
  9. J. Zigo et al., Mat. Charact. 138, 315 (2018);
    CrossRef
  10. H. W. Sheng et al., Acta Materialia 56, 6264 (2008);
    CrossRef
  11. N. C. Wu et al., Acta Intermetallics 39, 1 (2013);
    CrossRef
  12. D. Holland-Moritz et al., Phil. Mag. 86, 255 (2006);
    CrossRef
  13. K. Georgarakis et al., Act. Mat. 87, 174 (2015);
    CrossRef
  14. T. Schenk et al., Phys. Rev. Lett. 89, 075507 (2002);
    CrossRef
  15. O. S. Muratov et al., J. Non-Cryst. Solids 401, 44 (2014);
    CrossRef
  16. D. Cromer et al., Acta Crystallogr. 18, 104 (1965);
    CrossRef
  17. R. L. McGreevy, J. Phys. Condens. Matter. 13, R877 (2001);
    CrossRef
  18. http://www.rmc-forum.org/Downloads/RMCA
  19. Y. Plevachuk et al., Int. J. Mater. Res. 98, 107 (2007);
    CrossRef
  20. В. И. Ниженко и др., Расплавы 6, 72 (1992).
  21. O. S. Roik et al., J. Mol. Liq. 197, 215 (2014);
    CrossRef
  22. Н. Н. Медведев, Метод Вороного-Делоне в исследовании структуры некристаллических систем (Издательство СО РАН НИЦ ОИГГМ, Новосибирск, 2000).
  23. Y. I. Naberukhin et al., Mol. Phys. 73, 917 (1991);
    CrossRef
  24. M. Bortolotti et al., J. Appl. Crystallogr. 42, 538 (2009).
  25. M. Wojdyr et al., J. Appl. Crystallogr. 43, 1126 (2010);
    CrossRef
  26. D. S. Kanibolotsky et al., J. Therm. Anal. Calorimetry 70, 975 (2002);
    CrossRef
  27. O. Akinlad et al., J. Alloys Comp. 299, 163 (2000);
    CrossRef
  28. O. S. Roik et al., J. Non-Cryst. Solids 364, 34 (2013);
    CrossRef
  29. S. Sachdev et al., Phys. Rev. B 32, 4592 (1985);
    CrossRef
  30. V. Raghavan, J. Phase Equilibria Diffusion 32, 140 (2010);
    CrossRef