Journal of Physical Studies 23(4), Article 4603 [8 pages] (2019)
DOI: https://doi.org/10.30970/jps.23.4603

INFLUENCE OF GAMMA IRRADIATION (60Co) ON THE ELECTROPHYSICAL PARAMETERS OF n-Ge WITH A DIFFERENT DOPING LEVEL AND WITH OXYGEN IMPURITY IN DIFFERENT STATES

G. P. Gaidar{1}, P. I. Baranskii{2}

{1}Institute for Nuclear Research of the NAS of Ukraine,
47, Nauky Ave., Kyiv, UA-03028, Ukraine,
{2}V. Lashkaryov Institute of Semiconductor Physics of the NAS of Ukraine,
45, Nauky Ave., Kyiv, UA-03028, Ukraine
e-mail: gaydar@kinr.kiev.ua

On the basis of the measurements of the Hall effect, the specificity of the influence of $\gamma$-irradiation ($^{60}$Co) on changes in the charge carrier concentration $\Delta n$ and their mobilities was investigated in the \mbox{\textit{n}-Ge} single crystals of different levels of doping by the antimony impurity. The dependences of $\Delta n$ on the initial Sb impurity concentration in the crystals for two temperatures (room and liquid nitrogen) have been established, and changes in the charge carrier mobility (in the impurity scattering region) that correlate with changes in the carrier concentration have been revealed. At the liquid nitrogen temperature, the influence of $\gamma$-irradiation on the Hall parameters of \mbox{\textit{n}-Ge} $\langle$Sb$\rangle$ crystals with an oxygen impurity (atomically dispersed and in the form of oxygen complexes) was investigated. Changes in the electron mobility, which are opposite in sign, were detected in the initial and heat-treated ({400$^\circ$C}; \mbox{100 h}) germanium samples under the effect of irradiation. It was shown that the change in the scattering anisotropy under the influence of irradiation depends on the state of the oxygen impurity in Ge.

PACS number(s): 61.82.Fk

pdf


References
  1. A. V. Naumov, Izv. Vuzov. Tsvetn. Metallurg. No. 4, 32 (2007).
  2. B. Depuydt, A. Theuwis, I. Romandic, Mater. Sci. Semicond. Process. 9, 437 (2006);
    CrossRef
  3. M. Kobayashi et al., IEEE Trans. Electron. Devices 57, 1037 (2010);
    CrossRef
  4. S. Tong, J. L. Liu, J. Wan, K. L. Wang, Appl. Phys. Lett. 80, 1189 (2002);
    CrossRef
  5. C. Claeys, E. Simoen, Germanium-Based Technologies: From Materials to Devices (Elsevier Science Publishing Company, 2007).
  6. A. P. Oksanych, V. V. Malovanyi, Visn. KrNU im. M. Ostrohradskoho No. 1(78), 18 (2013); http://www.kdu.edu.ua/statti/2013-1(78)/18.pdf
  7. A. G. Buryachenko, G. S. Ranchenko, S. M. Ryabokon, Aviatsionno-Kosm. Tekhn. Tekhnolog. No. 8 (105), 240 (2013).
  8. R. A. Andrievski, Phys. Usp. 57, 945 (2014);
    CrossRef
  9. J. Konle, H. Presting, H. Kibbel, F. Banhart, Mater. Sci. Eng. B 89, 160 (2002);
    CrossRef
  10. A. K. Semeniuk, Radiation Effects in Many-Valley Semiconductors (Nadstyria, Lutsk, 2001).
  11. N. S. Patel, C. Monmeyran, A. Agarwal, L. C. Kimerling, J. Appl. Phys. 118, 155702 (2015);
    CrossRef
  12. P. I. Baranskii, А. V. Fedosov, G. P. Gaidar, Physical Properties of Silicon and Germanium Crystals in the Fields of Effective External Influence (Nadstyria, Lutsk, 2000).
  13. Problems of Radiation Technology of Semiconductors, edited by L. S. Smirnov (Nauka, Novosibirsk, 1980).
  14. K. T. Roro, P. J. Janse van Rensburg, F. D. Auret, S. Coelho, Physica B: Condens. Matter 404, 4496 (2009);
    CrossRef
  15. M. A. Gracheva, N. O. Golubovskaia, Actual Probl. Aviation Cosmonautics 2, 73 (2015).
  16. G. P. Gaidar, E. Yu. Gaivoronskaya, Surf. Eng. Appl. Electrochem. 53, 70 (2017);
    CrossRef
  17. P. I. Baranskii, G. P. Gaidar, Semicond. Phys. Quantum Electron. Optoelectron. 19, 39 (2016);
    CrossRef
  18. G. P. Gaidar, Phys. Chem. Solid State 17, 43 (2016);
    CrossRef
  19. T. Yokoi, M. Kawashita, K. Kikuta, Ch. Ohtsuki, J. Crystal Growth \textbf 312, 2376 (2010);
    CrossRef
  20. A. F. Shimanskii et al., Vestn. Sibir. Gos. Aerokosm. Univ. im. Akad. M. F. Reshetneva 17, 502 (2016).
  21. P. I. Baranskii, G. P. Gaidar, J. Thermoelectricity No. 1, 12 (2014).
  22. P. Clauws, Mater. Sci. Eng. B 36, 213 (1996);
    CrossRef
  23. L. I. Khirunenko et al., Mater. Sci. Semicond. Process. 11, 344 (2008);
    CrossRef
  24. H. H. P. Th. Bekman et al., Phys. Rev. B 42, 9802 (1990);
    CrossRef
  25. A. C. Beer, Galvanomagnetic Effects in Semiconductors, edited by F. Seitz, D. Turnbull (Academic Press Inc., New York and London, 1963).
  26. C. S. Fuller, W. Kaiser, C. D. Thurmond, J. Phys. Chem. Sol. 17, 301 (1961);
    CrossRef
  27. G. P. Gaidar, Semicond. Phys. Quantum Electron. Optoelectron. 15, 26 (2012);
    CrossRef
  28. V. M. Babich, P. I. Baranskii, V. A. Shershel, Phys. Status Solidi B 42, K23 (1970);
    CrossRef
  29. P. I. Baranskii, A. V. Fedosov, G. P. Gaidar, Heterogeneities of Semiconductors and Urgent Problems of the Interdefect Interaction in the Radiation Physics and Nanotechnology (EPD LSTU, Kyiv-Lutsk, 2007).
  30. P. I. Baranskii, V. P. Klochkov, I. V. Potykevich, Semiconductor Electronics. Handbook (Naukova Dumka, Kiev, 1975).
  31. P. I. Baranskii, I. S. Buda, I. V. Dakhovskii, V. V. Kolomoets, Electrical and Galvanomagnetic Phenomena in Anisotropic Semiconductors (Naukova Dumka, Kiev, 1977).