Journal of Physical Studies 23(4), Article 4701 [6 pages] (2019)
DOI: https://doi.org/10.30970/jps.23.4701

SIZE AND FREQUENCY DEPENDENCES OF THE SURFACE OPTICAL CONDUCTIVITY OF SINGLE-WALL CARBON NANOTUBES WITH METALLIC PROPERTIES

A. V. Korotun{1}, Ya. V. Karandas{1}, I. M. Titov{2}, V. I. Tretiak{1}

{1} National University ``Zaporizhzhia Politechnic'',
64, Zhukovsky St., Zaporizhzhya, UA--69063, Ukraine
{2} UAD Systems, 84, Alexandrovska St., Zaporizhzhya, UA--69002, Ukraine
e-mail:andko@zntu.edu.ua

In the one-electron approximation, the dimensional and frequency dependences of the real and imaginary parts of the surface conductivity of single-carbon nanotubes of zigzag and armchair configurations have been investigated. General formulas for the intraband and interband conductivity of the achiral nanotubes of the specified configurations have been obtained. A comparison of the results of the calculations of the surface conductivity of carbon nanotubes of different configurations and various chiralations has been carried out. The features of dimensional dependencies of real and imaginary parts of surface conductivity are discussed. One of them is an increase in the number of the levels of dimensional quantization with an increase in the radius of achiral CNTs, and, consequently, the number of maxima of the real part of the interband and, respectively, of the total surface conductivity and their superimposition, one at a time when the incident radiation is approaching the inverse relaxation time. It has been found that the metallic properties of the CNTs of the armchair type are more pronounced than those of the zigzag type CNTs. This is due to the higher concentration of electrons in the conduction band for this type of nanotubes. The results of numerical calculations indicate that the contribution of intraband conductivity to total surface conductivity is insignificant compared to the contribution of interband conductivity. It is established that the characteristic features of dimensional dependences of surface conductivity of CNTs are determined by its type. An analogy is observed in the behavior of the maxima of the real part of the interband and of the total surface conductivity of zigzag type carbon nanotubes and of a continuous metal nanowire with increasing radius of CNTs. It is shown that, as in the case of metal low-dimensional systems, the imaginary part of the surface conductivity of the achiral BNT is alternating, while the real part is positive for any value of the frequency of the incident electromagnetic wave.

PACS number(s): 73.25.+i, 73.63.Fg

pdf


References
  1. M. S. Dresselhaus, G. Dresselhaus, Ph. Avouris, Carbon nanotubes: Synthesis, Structure, Properties, and Application (Springer-Verlag, Berlin--Heidelberg, 2001);
    CrossRef
  2. A. Maffucci, S. A. Maksimenko, Fundamental and Applied Nano-Electromagnetics (Springer Netherlands, 2016);
    CrossRef
  3. P. Karlsen et al., J. Phys. D 51, 014003 (2018);
    CrossRef
  4. R. R. Hartmann, J. Kono, M. E. Portnoi, Nanotechnology 25, 322001 (2014);
    CrossRef
  5. M. V. Shuba et al., J. Appl. Phys. 119, 104303 (2016);
    CrossRef
  6. I. S. Nefedov, S. A. Tretyakov, Photonics Nanostructures: Fundam. Appl. 9, 374 (2011);
    CrossRef
  7. T. Kampfrath et al., Phys. Stat. Solidi (b) 244, 3950 (2007);
    CrossRef
  8. П. Н. Дьячков, Электронные свойства и применение нанотрубок (Бином. Лаборатория знаний, Москва, 2015).
  9. А. В. Голованов, Г. С. Макеева, В. В. Вареница, Надежн. кач. сложн. сист. 8, 26 (2014).
  10. М. А. Рувінський, Б. М. Рувінський, Фіз. хім. тверд. тіла 10, 529 (2009).
  11. Б. М. Рувінський, М. А. Рувінський, Фіз. хім. тверд. тіла 13, 325 (2012).
  12. А. В. Гец, В. П. Крайнов, Журн. эксп. теор. физ. 150, 1246 (2016);
    CrossRef
  13. Д. В. Колесников, Г. С. Иванченко, Н. Г. Лебедев, Физ. тверд. тела 58, 1168 (2016);
    CrossRef
  14. Г. С. Иванченко, Н. Г. Лебедев, Физ. тверд. тела 49, 183 (2007);
    CrossRef
  15. M. V. Shuba et al., Phys. Rev. B 96, 205414 (2017);
    CrossRef
  16. A. Moradi, Photonics Nanostructures: Fundam. Appl. 11, 85 (2013); https://doi.org10.1016/j.photonics.2012.09.001
  17. S. V. Goupalov, A. Zarifi, T. G. Pedersen. Phys. Rev. B 81, 153402 (2010);
    CrossRef
  18. J. Jiang, R. Saito, A. Grüneis, G. Dresselhaus, M. S. Dresselhaus. Carbon. 42, 3169 (2004);
    CrossRef
  19. А. М. Немиленцев, Г. Я. Слепян, С. А. Максименко, Вест. Беларус. гос. ун-та. Сер. 1 3, 18 (2008).
  20. S. J. Tans et al., Nature 386, 474 (1997);
    CrossRef
  21. В. П. Курбацкий, А. В. Коротун, А. В. Бабич, В. В. Погосов, Физ. тверд. тела 51, 2371 (2009);
    CrossRef
  22. G. Ya. Slepyan, S. A. Maksimenko, A. Lakhtakia, O. Yevtushenko, A. V. Gusakov, Phys. Rev. B 60, 17136 (1999);
    CrossRef