Journal of Physical Studies 23(4), Article 4901 [14 pages] (2019)
DOI: https://doi.org/10.30970/jps.23.4901

DEVELOPMENT OF EQUIPMENT AND TECHNIQUES OF THE POLARIMETRIC METHOD AS AN EFFECTIVE METHOD OF ASTROPHYSICAL RESEARCH. II. DESCRIPTION AND DEVELOPMENT OF THE APERTURE POLARIMETRY AT CrAO. EQUIPMENT AND SOFTWARE

S. V. Kolesnikov{1,2}

{1}Odessa I. I. Mechnikov National University
{2}Odessa National Maritime University

The review describes the instruments and methods of polarimetric studies that were successfully used in the Crimean Astrophysical School in the last quarter of the 20th and beginning of the 21st century. All devices described below use thes fast modulation method. They were applied to the study of various objects: classical polars, intermediate polars, other stars that have different values of circular and linear polarization, as well as a number of selected objects of the solar system, which show, among other things, a non-standard behavior of their polarization parameters. It turned out that the use of the fast modulation method made it possible to obtain statistically significant results of polarimetric measurements, even under conditions when the intrinsic variability of the object had to be detected despite a variable atmospheric transparency and other non-astrophysical factors. In many cases, the results obtained in this way were not only among the first, as in the cases of polarimetry of satellites of large planets, or some asteroids, but could not be obtained otherwise, which illustrates, for example, the result of the study of some white dwarfs and comets.

A two-beam polarimeter with an acousto-optic modulator not only made it possible to obtain the most accurate polarization measurements in wide spectral bands, but also determined the strength of the magnetic field of bright stars from the observations of hydrogen lines. The five-color polarimeter remains one of the few active device in the territory of the ex-USSR, which allows obtaining spectral dependence of the polarization parameters of fairly weak objects. And various modifications of the polarimeter with a rapidly rotating analyzer were a reliable source of information on the polarization of both extremely weak and rapidly varying objects.

All the experience we have gained during the operation of these devices was used in the development and creation of a multi-color two-channel polarimeter named after Nikolai Shakhovskoy. Publications based on the results of the observations by these instruments served as a ground for awarding the State Prize of Ukraine in the field of science and technology in 2010, including to the two founders of the Crimean Polarimetric School N. M. Shakhovskoy and Yu. S. Efimov.

PACS number(s): 95.75.Hi

pdf


References
  1. Н. М. Шаховской, Изв. КрАО 91, 106 (1994).
  2. K. Serkowski, Adv. Astron. Astrophys. 1, 289 (1962)
  3. Н. М. Шаховской, в Методы исследования переменных звезд, под ред. В. Б. Никонов (Наука, Москва, 1971), с. 199.
  4. K. Serkowski, in Planets, Stars and Nebulae studied with photopolarimetry, edited by T. Gehrels, (Univ. of Arisona Press, 1974), p. 135.
  5. K. Serkowski, in Methods of Experimental Physics. Vol. 12A, edited by N. Carleton (Academic Press, N.Y. \& L., 1974), p. 361.
  6. S. V. Kolesnikov, J. Phys. Stud. 23, 3901 (2019);
    CrossRef
  7. V. Piirola, Ann. Acad. Sei. Fenn. Ser. A 6, No. 418, 61 (1975).
  8. T. Korhonen, V. Piirola, A. Reiz, ESO Messenger 38 20 (1984).
  9. А. В. Бердюгин, Н. М. Шаховской, Изв. КрАО 87, 122 (1993).
  10. В. А. Кучеров, Фотометрические и поляриметрические исследования небесных тел (Наук. Думка, Киев, 1985), c. 152.
  11. В. А. Кучеров, Кинем. физ. небес. тел 2, № 1, 82 (1986).
  12. В. А. Кучеров, Кинем. физ. небес. тел 2, № 2, 59 (1986).
  13. В. С. Самойлов, А. В. Самойлов, Волновые пластинки (Головна астрономічна обсерваторія НАН України, 2015), c. 76. % УДК 681.7.064.8
  14. С. Ю. Калмин, Д. Н. Шаховской, Кинем. физ. небес. тел 11, 3 85 (1995).
  15. В. Вайсс, В. П. Маланушенко, Н. М. Шаховской, Изв. КрАО 82, 69 (1990).
  16. I. L. Andronov et al., Cent. Eur. J. Phys. 6 385 (2008);
    CrossRef
  17. Н. М. Шаховской, Ю. С. Ефимов, Изв. КрАО 45, 90 (1972).
  18. Н. М. Шаховской, Ю. С. Ефимов, Изв. КрАО 54, 99 (1976).
  19. Ю. С. Ефимов, Н. М. Шаховской, Изв. КрАО 64, 55 (1981).
  20. Н. М. Шаховской и др., Изв. КрАО 97, 91 (2001) [Bull. Crimean Astrophys. Obs. 97, 73 (2001)].
  21. S. V. Kolesnikov et al., Odessa Astron. Publ. 29, 74 (2016);
    CrossRef
  22. M. Soma, Th. Hirayama, H. Kinoshita, IEEE Trans. Magn. 13, 1394 (1977);
    CrossRef
  23. V. V. Breus, Odessa Astron. Publ. 20, 32 (2007);
    CrossRef
  24. V. Rosenbush et al., {ICHMT DL}, 181 (2007); \linebreak
    CrossRef
  25. K. A. Antonyuk et al., Astrophys. Bull. 71, 475 (2016);
    CrossRef
  26. A. F. Valeev et al., Astrophys. Bull. 72, 44 (2017);
    CrossRef
  27. I. L. Andronov et al., ASPC 511, 43A (2017).
  28. P. A. Mason et al., ASPC 261, 157M (2002).
  29. A. D. Silber et al., Astrophys. J. 460, 939 (1996);
    CrossRef
  30. A. D. Silber et al., Mon. Not. R. Astron. Soc. 290 25 (1997);
    CrossRef