Journal of Physical Studies 23(4), Article 4902 [10 pages] (2019)
DOI: https://doi.org/10.30970/jps.23.4902

PHYSICAL CONDITIONS IN M6.4/3N SOLAR FLARE OF 19 JULY 2000

V. G. Lozitsky1, M. I. Stodilka{2}

1Astronomical Observatory of the Taras Shevchenko National University of Kyiv,
3, Observatorna St., Kyiv, Ukraine
2Astronomical Observatory of the Ivan Franko National University of Lviv,
8, Kyryla i Mefodiya St., Lviv, Ukraine

We investigate the solar flare on July 19, 2000 of M6.4/3N class, which arose in the active region NOAA 9087. Echelle Zeeman spectrograms of this flare were obtained at the horizontal solar telescope of the Astronomical Observatory of the Taras Shevchenko National University of Kyiv. The effective magnetic field $B_{\rm eff}$ was measured using spectral lines FeI 6301.5, FeI 6302.5 and ${\rm H}_\beta$. It turned out that in the brightest place of the flare, which was projected onto a small sunspot of N magnetic polarity, $B_{\rm eff}$ by all three above-named lines are close to each other and correspond to 1.0-1.2 kG. At the same time, the module of magnetic field strength at the level of formation of FeI 6302.5 was within the range of 1.6-2.6 kG. The features of the bisectors of $I\pm V$ profiles of FeI 6301.5 line indicate a simple one-component magnetic field structure at the level of the middle photosphere under the flare. The semi-empirical model of the photospheric layers was constructed on the basis of the observational profiles of Stokes $I$ of Fe I 5123.7 and 5434.5 lines by solving the inverse problem of non-equilibrium transfer of radiation using Tikhonov's stabilizers. It turned out that for the temperature distribution with height, the deviation from the LTE is already significant for the layers of the lower photosphere corresponding to the heights $h\geq0$ (that is, $\tau_5\leq1$). In the entire thickness of the photosphere ($h=0-500$ km), the temperature in the flare is lowered compared to the undisturbed atmosphere, whereas for $h>500$ km it is slightly elevated. The microturbulent velocity is raised at altitudes of $h=200-500$ km, while at altitudes of $h<200$ km it is lowered. The obtained results indicate that the upper photosphere and the lower chromosphere are significantly disturbed during a solar flare, even when the magnetic field in the lower layers (the middle photosphere) is quasi-homogeneous.

PACS number(s): 96.60.Hv, 96.60.Q-, 96.60.qe

pdf


References
  1. V. G. Lozitsky, E. A. Baranovsky, N. I. Lozitska, U. M. Leiko, Solar Phys. 191, 171 (2000);
    CrossRef
  2. V. G. Lozitsky, Astron. Lett. 35, 136 (2009);
    CrossRef
  3. E. V. Kurochka, V. G.  Lozitsky, Kinem. Phys. Nebes. Tel, Suppl. 21, 143 (2005).
  4. E. V. Kurochka, V. G. Lozitsky, O. B. Osyka, Kinem. Phys. Celest. Bodies 24, 308 (2008);
    CrossRef
  5. V. I. Abramenko, E. A. Baranovsky, Solar Phys. 220, 81 (2004);
    CrossRef
  6. E. S. Andriets, N. N. Kondrashova, E. V. Kurochka, V. G. Lozitsky, Bull. Crimean Astrophys. Observ. 108, 1 (2012);
    CrossRef
  7. E. A. Baranovsky, V. G. Lozitsky, V. P. Tarashchuk, Kinem. Phys. Celest. Bodies 25, 373 (2009);
    CrossRef
  8. E. H. Avrett, R. Loeser, SAO Spec. Rep. 303 (1969).
  9. B. Ruiz Cobo, J. C. del Toro Iniesta, Astrophys. J. 398, 375 (1992);
    CrossRef
  10. H. Socas-Navarro, Astrophys. J. Suppl. Ser. 169, 439 (2007);
    CrossRef
  11. A. Cristaldi, I. Ermolli, Astrophys. J. 841, 115 (2017);
    CrossRef
  12. J. de la Cruz Rodríguez, J. Leenaarts, A. Asensio Ramos, Astrophys. J. Lett. 830, 30 (2016);
    CrossRef
  13. M. I. Stodilka, Kinem. Fiz. Nebes. Tel 19, 334 (2003).
  14. V. G. Lozitsky, Adv. Space Res. 57, 398 (2016);
    CrossRef
  15. S. Tsuneta et al., Solar Phys. 249, 167 (2008);
    CrossRef
  16. Ch. E. Moore, M. G. J. Minnaert, J. Houtgast, The spectrum 2935 A to 8770 A. Second revision of Rowland's Table of solar spectrum wave lengths (National Bureau of Standards, Washington, DC, 1966).
  17. E. L. Landi Degl'Innocenti, Solar Phys. 77, 285 (1982);
    CrossRef
  18. E. N. Zemanek, A. P. Stefanov, Vestnik Kiev Univ. Ser. Astron. 18, 20 (1976).
  19. J. O. Stenflo, Solar Phys. 32, 41 (1973);
    CrossRef
  20. I. Dominguez Cerdena, J. Sanches Almeida, F. Kneer, Astron. Astrophys. 407, 741 (2003);
    CrossRef
  21. D. N. Rachkovsky, T. T. Tsap, V. G. Lozitsky, J. Astrophys. Astron. 26, 1 (2005);
    CrossRef
  22. V. G. Lozitsky, E. A. Baranovsky, N. I. Lozitska, V. P. Tarashchuk, Mon. Not. Roy. Astron. Soc. 477, 2796 (2018);
    CrossRef
  23. V. G. Lozitsky, J. Staude, J. Astrophys. Astron. 29, 387 (2009);
    CrossRef
  24. N. I. Lozitska, et al., Adv. Space Res. 55, 897 (2015);
    CrossRef
  25. H. Socas-Navarro, B. Ruiz Cobo, J. Trujillo Bueno, Astrophys. J. 507, 470 (1998);
    CrossRef
  26. M. Asplund, A. Nordlund, R. Trampedach, C. Allende Prieto, R. F. Stein, Astron. Astrophys. 359, 729 (2000).
  27. J. E. Vernazza, E. H. Avrett, R. Loeser, Astrophys. J. Suppl. Ser. 45, 635 (1981);
    CrossRef
  28. P. Maltby et al., Astrophys. J. 306, 284 (1986);
    CrossRef
  29. M. Schussler, A. Vogler, Astrophys. J. 641, 73 (2006);
    CrossRef
  30. M. Rempel, M. Schussler, M. Knolker, Astrophys. J. 691, 640 (2009);
    CrossRef
  31. Ch. Cowley, The Theory of Stellar Spectra (Gordon and Breach Science Publishers, New York--London--Paris, 1970).
  32. Э. А. Гуртовенко, Р. И. Костик, Фраунгоферов спектр и система солнечных сил осцилляторов (Наукова думка, Киев, 1989).
  33. E. N. Parker, Astrophys. J. 234, 333 (1979);
    CrossRef
  34. H. C. Spruit, in Proceedings of the Conference "The Physics of Sunspots" (Sacramento Peak Observatory, New Mexico, 1981), p. 98.
  35. A. R. Choudhuri, NATO ASIC Proc. 375: Sunspots. Theory and Observations, edited by J. H. Thomas, N. O. Weiss (Kluwer Academic Publisher, 1992).
  36. J. Joshi, PhD Thesis, Techn. Universitat Braunschweig (Germany, 2014). %ISBN 978-3- 944072-01-2
  37. A. Cristaldi et al., Astrophys. J. 789, 162 (2014);
    CrossRef
  38. P. Gomory et al., Astron. Astrophys. 602, 60 (2017);
    CrossRef
  39. J. J. Sudol, J. W. Harvey, Astrophys. J. 635, 647 (2005);
    CrossRef
  40. N. N. Kondrashova, Mon. Not. Roy. Astron. Soc. 431, 1417 (2013);
    CrossRef
  41. C. Kuckein, M. Collados, R. Manso Sainz, Astrophys. J. Lett. 799, L25 (2015);
    CrossRef