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We carry out a dynamical analysis of the collision process between two diatomic molecules in
the presence of a strong magnetic field. In order to exemplify, these molecules can be, say, typically,
lasing molecules as, for instance, relative to carbon-monoxide gasdynamic lasers. The molecules
in question behave as quantum anharmonic oscillators after the Morse potential. In our analysis,
we simulate the kinetic energy lost after the collision by assuming, equivalently, two additional
molecules (fictitious and identical to the molecules which collide) with the above kinetic energy.
Furthermore, the corresponding density of states is determined and associated matrix formalisms
are established to calculate the total number of states.
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I. INTRODUCTION

The Morse-potential model plays an important role
in Molecular and Nuclear Physics. In fact, a number
of phenomena of the aforementioned fields can be mod-
elled by introducing a Morse-type potential. In particu-
lar, in Atomic and Molecular Physics as well as in Con-
densed Matter Physics, we may find relevant examples
in which the above type of potential is suitable to de-
scribe quantitatively the involved anharmonic-oscillator
behaviour [1–6]. As a matter of fact, we may consider
certain disordered systems in which electrons behave as
anharmonic oscillators under the action of a Morse po-
tential. In addition, under certain conditions, the atoms
of a distorted or even ordered crystalline lattice behave
as anharmonic oscillators submitted to a Morse-type po-
tential. On the other hand, the vibrational behaviour of
diatomic molecules can be modelled by the Morse po-
tential. By the way, after the united-atom approxima-
tion (see, for instance, Ref. [7]), the vibrational motion
of some polyatomic molecules can be also modelled by
the Morse approach.

The aim of the present article is developing a theoret-
ical formulation to explain the collision process between
two diatomic molecules that are under an intense mag-
netic field. For instance, in relation to high-power lasers
(particularly, gasdynamic lasers), one may consider colli-
sion processes in the context of vibrational behaviour of
carbon-monoxide molecules or nitrogen molecules, which
play an important role as lasing molecules [8, 9]. Other
typical examples deal with certain chemical reactions for
the formation of transition-metal oxides [10, 11] as CdO
and ZnO. As a matter of fact, we will present a dynamic

study on the aforementioned collision process. Particu-
larly, in this study, we will elaborate, say, an equivalence
scheme to simulate the kinetic energy lost after the col-
lision by means of two additional (fictitious) diatomic
molecules (identical to the molecules that collide) with
the above mentioned kinetic energy. Moreover, the cor-
responding density of states will be calculated and asso-
ciated matrix formalisms will be presented.

II. THEORETICAL FORMULATION

Let us consider a diatomic molecule under the action
of a one- dimensional Morse potential. The correspond-
ing potential energy can be expressed as follows:

V (x) = D {1− exp[−α(x− x0)]}2 , (1)

where x is cartesian coordinate in the direction of the
inter-nuclear axis of the molecule, D is the potential
depth, x0 is the equilibrium position of the molecule, and
α is a parameter associated directly with the width of
the potential. The corresponding non-relativistic, time-
independent, Schrödinger equation for a molecule of mass
denoted by m, reads:

d2ψn(x)
dx2

+
2m
~2

[En − V (x)]ψn(x) = 0, (2)

where the quantum number n will be defined later. It is
well-known that the total energy eigenvalues of Eq. (2)
with formula (1) are given by the following relationship,
which can be considered as a two-variable functional se-
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quence as follows:

En(ω, ε) = ~ω
(
n+

1
2
− nε− n2ε− ε

4

)
, (3)

where ω denotes the fundamental angular frequency of
the anharmonic oscillator in question, n = 0, 1, 2, . . . is
the corresponding vibrational quantum number, and ε
is a relatively small anharmonic coefficient. Parameters
ω and ε satisfy ε = hω/(4D); so one has three param-
eters, namely, ω, ε and D, two of them being mutually
independent. Therefore, we can take ω and ε as mutually
independent parameters which, regarding all the possi-
ble Morse oscillators, may be viewed as real variables.
At this point, we recall that Eq. (3) represents a real-
valued functional sequence with two real variables.

We regard two diatomic molecules initially in the pres-
ence of a perpendicular intense magnetic field, so (ini-
tially) the molecules move circularly. Assume that, later,
the field acts in the direction of the inter-nuclear axis
of the molecules so that we are interested in the vibra-
tional behaviour of the molecules in question under the
potential energy represented in Eq. (1). So, the molecules
behave as quantum anharmonic oscillators. Assume also
that the molecules collide due, for instance, to photon
interaction. In this context, a, say, typical example is
lasing molecules as we have said in Section 1. Before the
collision, we suppose that the two molecules are in state
n. After they collide (consider, for example, intense laser
interaction), one of them is pumped up to state n+1 and
the other molecule falls down to state n − 1 (note that,
of course, n ≥ 1) [8, 9]. Therefore, under all the above
conditions, it follows:

2En − En+1 − En−1 = Ekin, (4)

where Ekin is kinetic energy resulting from that ε 6= 0 .
Note that Ekin = 0 if ε = 0 (harmonic case). Combining
(3) with (4), one gets:

Ekin = 2~ωε. (5)

On the other hand, we have that ω = eB/m (cyclotron
angular frequency) where B denotes the induction (mag-
netic flux density) of the involved magnetic field and e
is the absolute value of the electron charge. Although
the above field is strong enough (so ω may be relatively
high), ε can have, say, moderate values (less than 1/2)
because ε = ~ω/(4D) and D should be large enough. At
this point, notice that ε→ 0 when D →∞ (for not too
large ω). On the other hand, formula (3) with ε = 0 and
ω = eB/m corresponds to the so-called Landau quantum
states, whereas, considering that ε 6= 0, we may speak of
Morse quantum states [6], that is, from the formulation
of the present paper. It is clear that this formulation is
a generalization of the Landau approach.

The fact that there is lost kinetic energy [see Eq. (5)]
suggests simulating this fact by introducing two addi-
tional diatomic molecules identical to the former ones
(after the molecular collision in question) with the above
kinetic energy. We emphasize that, in addition to the
two real molecules with respective states n+1 and n− 1

after the collision, we introduce two fictitious molecules
(identical to the former ones) of the kinetic energy given
by formula (5). This may be viewed as an equivalence
theorem. Thus, we have that Ekin = mrv

2/2 where mr

is the reduced mass of the two fictitious molecules and
v is the magnitude of the velocity of the molecule center
of mass; one has that mr = m/2. Combining these facts
with formula (5) and with the above expressions for ε
and ω , then we have:

v =
~eB
m

√
2
mD

. (6)

Looking at formula (6), notice that v, although been pro-
portional to B (which is strong), is inversely proportional
to D (D is relatively large), so v is moderate. On the oth-
er hand, note the significant mass-dependence of v. Now
we are interested in determining the associated density of
states. To achieve this end, we will consider both atomic
and molecular orbitals in the context of Refs. [12–14].
Within this framework, an accurate expression for the
density of states of each molecule before the molecular
collision is:

g(E) =
∑
n,k

|ψn∗ϕk|2 wk(E)δ(E − En), (7)

where ϕk stands for atomic orbitals (electron wave-
functions), the asterisk denotes convolution, wk(E) are
weight functions, and δ designates Dirac’s delta func-
tion. We remark the role of ψn ∗ ϕk as quantum an-
harmonic oscillator strength. On the other hand, notice
that n, k = 1, 2, . . . . Notice also that including weighted
quantities into Eq. (7) is a relevant fact whose meaning
is clear: formula (7) is an actually accurate expression
which improves the state of the art, providing useful in-
formation that is missing fron other formulations. After
the molecules collide, one considers [in Eq. (7)], respec-
tively, n+ 1 and n− 1 instead of n. The total number of
quantum states reads:

N =
∫ ∞

0

g(E) dE. (8)

Replacing (7) into (8), it follows (before the collision):

N =
∑
n,k

|ψn∗ϕk|2 wk(En). (9)

By defining the matrix elements, namely, |ψn ∗ ϕk|2 ≡
γnk and wk(En) ≡ unk, relation (9) becomes an inner
(dot) product of matrices as follows:

N = Γ • U, (10)

where Γ = (γnk) and U = (unk). Relation (9) can be also
viewed as follows:

N = tr(ΓtU), (11)

where tr denotes trace. Relations (10) and (11) consti-
tute matrix formalisms for expressing the total number of
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states (before the collision) in an elegant and concise way.
After the collision, straightforwardly similar results are
obtained. Another interesting formalism reads [13–16]:

N = tr(Γt ⊗ U), (12)

where the tensorial product is not the tensor product in
the Kronecker sense used in standard Quantum Mechan-
ics but it is a dyadic-tensor product as in the following
example relative to 2× 2 matrices:

(
a b
c d

)
⊗

(
a′ b′

c′ d′

)
=

 aa′ ab′ ac′ ad′

ba′ bb′ bc′ bd′

ca′ cb′ cc′ cd′

da′ ab′ db′ dd′

 . (13)

Note that the product in question of expression (13) is
non-commutative. In fact, the transpose of the right-
hand side of (13) equals the left-hand side with changing

the order of the matrices. By virtue of this, formula (12)
becomes:

N = tr(U ⊗ Γ)t. (14)

On the other hand, by using the Hadamard–Schur prod-
uct of matrices (that is, multiplying homologous matrix
elements), one has:

Γ ◦ U = (γnkunk). (15)

Therefore, the usual norm of the above product written
in formula (15) reads:

Γ ◦ U =
∑
n,k

γnkunk. (16)

By formulae (9) to (13), it follows:

N = Γ ◦ U = Γ • U = tr(ΓtU) = tr(Γ⊗ U) = tr(U ⊗ Γ)t. (17)

III. DISCUSSION AND CONCLUSIONS

For the first time, we have presented an accurate anal-
ysis of an interesting molecular collision process within
the framework of the Morse potential associated with
the presence of a strong magnetic field. It is clear that
the involved molecules are quantum anharmonic oscil-
lators [6] that can be, for example, molecules under an
intense laser field. Since molecules as quantum harmon-
ic oscillators under a magnetic field occupy the so-called
Landau states, then one may say that molecules (or par-
ticles in general) as Morse (quantum) oscillators under a
magnetic field occupy the Grado-Caffaro states [6]. Un-
fortunately, not much has been done, to date, with re-
gard to quantum anharmonic oscillators. At this point,
we should claim that, certainly, anharmonicity occupies a
notorious place in the context of Nonlinear Physics. One

must remark especially that our study is unprecedented
as it opens up new perspectives on how to tackle simi-
lar problems from a strict mathematical-physics stand-
point. Our collision process has been described mathe-
matically with significant rigour. In particular, formula
(6) is a direct consequence of the equivalence theorem
by which four identical molecules are involved. The key
points of the present article are formulas (4) to (9), which
arise from our analysis of the involved density of states,
and (10) to (17) relative to matrix formalisms concerning
the total number of states. Both mathematical elegance
and usefulness come from these formalisms. On the oth-
er hand, we would note the importance of the concept of
density of states in various areas of Physics. For instance,
we may refer to the integrated density of states for a peri-
odic Schrödinger operator (Hamiltonian operator for the
Schrödinger equation with periodic potential) [19–22].
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ВИЗНАЧЕННЯ КЛЮЧОВИХ ЕНЕРҐЕТИЧНИХ СПIВВIДНОШЕНЬ, КВАНТОВИХ
СТАНIВ ТА ПОВ’ЯЗАНИХ З НИМИ МАТРИЧНИХ ФОРМАЛIЗМIВ,

ЩО СТОСУЮТЬСЯ ЗIТКНЕННЯ ДВОХ ДВОАТОМНИХ МОЛЕКУЛ У СИЛЬНОМУ
МАГНIТНОМУ ПОЛI

М. А. Ґрадо-Каффаро, М. Ґрадо-Каффаро
Мадрид, Iспанiя

Проведено динамiчний аналiз процесу зiткнення двох двоатомних молекул за наявностi сильного маг-
нiтного поля. Це можуть бути, наприклад, молекули в газодинамiчних лазерах на основi оксиду вуглецю.
Молекули, про якi йдеться, поводяться як квантовi ангармонiчнi осцилятори в потенцiалi Морзе. У нашому
аналiзi, вводячи двi додатковi фiктивнi молекули (iдентичнi молекулам, що стикаються) iз такою самою
кiнетичною енерґiєю, моделюємо втрату кiнетичної енерґiї внаслiдок зiткнення. Крiм того, визначаємо вiд-
повiдну густину станiв i встановлюємо пов’язанi матричнi формалiзми для обчислення повної кiлькостi
станiв.
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