Journal of Physical Studies 24(1), Article 1201 [8 pages] (2020)
DOI: https://doi.org/10.30970/jps.24.1201

SIMULATION OF THE NUCLEAR BURNING WAVE OF 232Th IN THE 239Pu ENRICHMENT FOR THE NEUTRON ENERGY THERMAL AREA

A. O. Kakaev{1}, V. O. Tarasov{1} , S. A. Cherneshenko{1}, V. D. Rusov{1} , V. O. Sova{2}

{1}Odesa National Polytechnic University,
1, Shevchenko Ave., Odesa, UA-65044, Ukraine,
e-mail:andreykakaev@gmail.com
{2}State Scientific and Technical Center for Nuclear and Radiation Safety,
35-37, Vasyl Stus St., Kyiv, UA-03142, Ukraine

Received 25 November 2019; in final form 02 February 2020; accepted 03 February 2020; published online 07 April 2020

At the initial stage, the development of wave reactors, which will operate in the mode of nuclear burning wave (NBW), requires the study of the kinetics of the NBW fuel mode when changing both external parameters (flux density of an external neutron source, thermophysical parameters of heat transfer) and internal parameters (fuel composition, reactor material parameter, delayed neutrons).

In order to confirm the enrichment capabilities of NBW, we evaluated the impact on the fulfillment of the NBW criterion for thorium fuel ($^{232}${Th} with different enrichments according to $^{239}${Pu}) and its behavior during the firing stage. The main differences between the traveling wave reactor and those currently used are that it runs on fuel without enrichment, does not require extra fuel loading, which means that it cannot explode in principle, therefore, it belongs to the safe class. In this case, a self-regulating mode of wave nuclear combustion occurs in it which excludes control rods. Such a reactor can operate at the first stage as a storage (bridder) of fissile material, and after the accumulation of the fuel component, the fission of the formed nuclide occurs. As a result, the neighboring local zone for combustion will be activated, and so on in a repeating mode, until complete burnout. Since combustion occurs locally, the development of an uncontrolled chain reaction and subsequent explosion is impossible, due to the rapid nuclei burning of the active component of the fuel. Moreover, it can be used as a reactor with a homogeneous or heterogeneous core, as well as a reactor with a large temporary company.

To confirm the validity of the criterion fulfillment of slow NBW depending on the neutron energy, a numerical simulation of the thorium fuel NBW mode dynamic was performed, taking into account the delayed neutrons in the thermal and super thermal regions of the neutron energies (0.015-10 eV).

pdf


References
  1. Л. П. Феоктистов, Докл. Акад. наук СССР 309, 864 (1989).
  2. V. D. Rusov, V. A. Tarasov, V. N. Vaschenko, Traveling Wave Nuclear Reactor (Publishing group "A.C.C.", Kyiv, 2013).
  3. V. D. Rusov et al., Sci. Technol. Nucl. Install. 2015, 703069 (2015);
    CrossRef ; preprint arXiv:1207.3695 (2012).
  4. С. П. Фомин и др., Атом. энерг. 107, 288 (2009).
  5. В. Н. Павлович, В. Д. Русов, В. Н. Хотяинцев, Е. Н. Хотяинцева, Атом. энерг. 102, 151 (2007).
  6. J. Gilleland et al., in Proceedings of the 2008 International Congress on Advances in Nuclear Power Plants (American Nuclear Society, Anaheim, CA, 2008), paper No. 8319.
  7. K. D. Weaver, J. Gilleland, C. Ahlfeld, C. Whitmer, G. Zimmerman, J. Eng. Gas Turbines Power 132, 102917 (2010);
    CrossRef
  8. T. Ellis et al., in Proceedings of the 2010 International Congress on Advances in Nuclear Power Plants (San Diego, CA, USA, 2010), paper No. 10189.
  9. R. L. Garwin, Fast Reactors When? Presented at Erice, Sicily International Seminars on Planetary Emergencies and Associated Meetings -- 43rd Session, August 21, 2010, https://fas.org/rlg/Erice %20Fast%20Reactors%20When_1.pdf
  10. R. A. Hyde et al., Automated Nuclear Power Reactor for Long-Term Operation. Patent Application Publication No.: US 2008/0123797 A1, May 29, 2008.
  11. R. A. Hyde et al., Automated Nuclear Power Reactor for Long-Term Operation. Patent Application Publication No.: US 2008/0123797 A1, May 29, 2008.
  12. R. A. Hyde et al., Method And System for Providing Fuel in Nuclear Reactor. Patent Application Publication No.: US 2009/0175402 A1, Jul. 9, 2009.
  13. C. E. Ahlfeld et al., System and Method for Operating a Modular Nuclear Fission Deflagration Wave Reactor. Patent Application Publication No.: US 2009/0225920 A1, Sep. 10, 2009.
  14. C. E. Ahlfeld et al., Traveling Wave Nuclear Fission Reactor, Fuel Assembly, and Method of Controlling Burnup Therein. Patent Application Publication No.: US 20100254501, Jul. 10, 2010.
  15. V. D. Rusov et al., Prog. Nucl. Energy 83, 105 (2015);
    CrossRef ; preprint arXiv:1409.7343v2 (2014).
  16. Ю. М. Широков, Н. П. Юдин, Ядерная физика (Наука, Москва, 1980).
  17. Г. Г. Бартоломей, Г. А. Бать, В. Д. Байбаков, М. С. Алхутов, Основы теории и методы расчета ядерных энергетических реакторов (Энергоатомиздат, Москва, 1989).
  18. В. И. Владимиров, Практические задачи по эксплуатации ядерных реакторов (Энергоатомиздат, Москва, 1986).
  19. С. В. Алексеев, В. А. Зайцев, Торий в ядерной энергетике (Техносфера, Москва, 2014).
  20. В. Л. Блинкин, В. М. Новиков, Жидкосолевые ядерные реакторы (Атомиздат, Москва, 1978).