Journal of Physical Studies 24(1), Article 1401 [9 pages] (2020)
DOI: https://doi.org/10.30970/jps.24.1401

EMITTING CHARACTERISTICS AND PARAMETERS OF GAS-DISCHARGE PLASMA ON A MIXTURE OF MERCURY DICHLORIDE VAPOR WITH NITROGEN

A. O. Malinina , O. K. Shuaibov 

Uzhhorod National University,
3, Narodna Sq., Uzhhorod, UA-88000, Ukraine

Received 22 February 2019; in final form 01 February 2020; accepted 04 February 2020; published online 03 April 2020

The article presents the results of the studies of optical characteristics and parameters of a gas-discharge barrier-discharge plasma on a mixture of mercury dichloride vapor with nitrogen, which was the working medium of an exciplex gas-discharge emitter. The purpose of the study was to identify the regularities in the optical characteristics of a gas-discharge plasma on a mixture of mercury dichloride vapor with nitrogen; to determine the partial pressure of a buffer gas nitrogen at which the maximum radiation power in the blue-green spectral range in the emitters is reached; to determine the plasma parameters depending on the value of the reduced electric field ($E/N$ is the ratio of the electric field strength to the total concentration of the components of the working mixture) and also establish their values for the $E/N$ value at which the maximum radiation power was observed in the experiment. The working mixture in the atmospheric-pressure barrier discharge was excited by a power source with a pulse-periodic output voltage with the possibility of frequency tuning in the range of 1-20 kHz and amplitude of voltage pulses within 10-30 kV. Plasma parameters were determined numerically based on the electron energy distribution function (EEDF) in discharge. EEDF was determined by solving the kinetic Boltzmann equation in two-terms approximation using the well-known program ``Bolsig +''. It was found that the double-pulse excitation mode of the working mixture allows for an increase in the radiation power of the source in the blue-green spectral region due to the presence of an additional process of increasing the population of the $B^2Σ^+_{1/2}$-state of mercury monochloride, namely the collision of electrons with mercury monochloride molecules, which are in the ground $X^2Σ^+_{1/2}$-state. The rate constant of the process, which leads to the formation of mercury monochloride molecules, is $2.3 \cdot 10^{-15}$ m${}^{3}$/s for a reduced electric field $E/N = 4.57\cdot10^{-15}$ В $см^2$, at which, under the experimental conditions, the maximum radiation power was observed in the blue-green spectral region ($λ_{\rm max} = 557$ nm).

pdf


References
  1. J. H. Parks, Appl. Phys. Lett. 31, 297 (1977);
    CrossRef
  2. R. Burnliam, Appl. Phys. Lett. 33, 152 (1978);
    CrossRef
  3. И. С. Лакоба, С. И. Яковленко, Квант. электрон. 7, 677 (1980).
  4. R. Burnham, E. J. Schimitschek, Laser Focus 6, 54 (1981).
  5. С. П. Бажулин и др., Квант. электрон. 13, 1275 (1986) [Sov. J. Quantum Electron. 16 , 836 (1986)];
    CrossRef
  6. А. М. Бойченко и др., Ультрафиолетовые и вакуумно-ультрафиолетовые эксилампы: физика, техника и применение (STT, Томск, 2011).
  7. A. N. Malinin, Laser Phys. 7, 1032 (1997).
  8. A. N. Malinin, Laser Phys. 8, 395 (1998).
  9. М. М. Гуйван, О. М. Малінін, Л. Л. Шимон, Наук. вісн. Ужгород. ун-ту 4, 12 (1999).
  10. A. N. Malinin, N. N. Guivan, L. L. Shimon, Opt. Spectroscopy 89, 829 (2000);
    CrossRef
  11. M. M. Guivan, A. N. Malinin, L. L. Shimon, J. Phys. Stud. 6, 74 (2002).
  12. М. М. Гуйван, О. М. Малінін, Укр. фіз. журн. 47, 24 (2002).
  13. Ю. И. Посудин, Лазерная фотобиология (Вища школа, Київ, 1989).
  14. В. Д. Романенко, Биотехнология культивирования гидробионтов (Ин-т гидробиологии НАНУ, Киев, 1999).
  15. U. Kogelschatz, Fundamentals and applications of dielectric-barrier discharges, in: HAKONE VII International Symposium on High Pressure Low Temperature Plasma Chemistry (Greifswald, Germany, 2000).
  16. А. И. Ефимов, Л. П. Белорукова, И. В. Василькова, В. П. Чечев, Свойства неорганических соединений. Справочник (Химия, Ленинград, 1983).
  17. Р. А. Сапожников, Теоретическая фотометрия (Энергия, Москва, 1977).
  18. R. W. Pears, A. G. Gaydon, The Identification of Molecular Spectra (Chopman Holl LT, London, 1963).
  19. G. J. M. Hagelaar, L. C. Pitchford, Plasma Sources Sci. Technol. 14, 722 (2005);
    CrossRef
  20. http://www.siglo-kinema.com
  21. V. Kushawaha, M. Mahmood, J. Appl. Phys. 62, 2173 (1987);
    CrossRef
  22. A. N. Malinin, Laser Phys. 7, 1168 (1997).
  23. Ю. П. Райзер, Физика газового разряда (Наука, Москва, 1987).
  24. M. I. Lomaev et al., Phys.-Uspekhi 46, 193 (2003);
    CrossRef
  25. И. Мак-Даниеля, У. Нигэна, Газовые лазеры (Мир, Москва,1986).
  26. A. Mandl, J. J. Parks, C. Roxlo, J. Chem. Phys. 72, 504 (1980);
    CrossRef
  27. A. N. Malinin, Laser Physs. 7, 1177 (1997).
  28. R. W. Waynant, J. G. Eden, Appl. Phys. Lett. 33, 708 (1978).
  29. W. R. Wadt, J. Chem. Phys. 72, 2469 (1980);
    CrossRef
  30. W. L. Nighan, R. T. Brown, J. Appl. Phys. 53, 7201 (1982);
    CrossRef
  31. http://www.lxcat.laplace.univ-tlse.fr ; http://www.lxcat.laplace.univ-tlse.fr
  32. W. R. Wadt, Appl. Phys. Lett. 34, 658 (1979);
    CrossRef
  33. V. V. Datsyuk, I. A. Izmailov, V. V. Naumov, V. A. Kochelap, Plasma Sources Sci. Technol. 25 045020 (2016);
    CrossRef
  34. V. V. Datsyuk et al., Phys.-Uspekhi 41, 379 (1998);
    CrossRef
  35. Yu. S. Akishev, A. V. Dem’yanov, V. B. Karal’nik, M. V. Pan’kin, N. I. Trushkin, Plasma Phys. Rep. 27, 164 (2001) 27, 176( 2001); https://doi.org10.1134/1.1348495
  36. A. C. Erlandson, T. A. Cool, Chem. Phys. Lett. 96, 685 (1983);
    CrossRef