Journal of Physical Studies 24(1), Article 1603 [5 pages] (2020)
DOI: https://doi.org/10.30970/jps.24.1603

DETERMINATION OF THE THERMAL DIFFUSIVITY COEFFICIENT OF TRANSPARENT SOLIDS BY A MODULATION POLARIMETRY TECHNIQUE

I. Matyash, I. Minailova , L. Maksimenko, B. Serdega

V. Lashkarev Institute of Semiconductor Physics, NAS of Ukraine,
41, Nauky Ave., Kyiv, UA-03028, Ukraine

Received 12 December 2019; in final form 09 January 2020; accepted 24 January 2020; published online 11 March 2020

A technique for determining an important thermophysical parameter, the thermal diffusivity of solids, is proposed. It characterizes the rate of heat front or wave propagation in the material volume. A series of mechanical stress measurements $\sigma (t)_i$ was performed at several points of the sample to determine this parameter. The measurements were carried out using the modulation polarimetry technique in real time under conditions of a slight temperature difference. Thermal stresses can be diagnosed under conditions of temperature independence of the mechanical, optical, and thermophysical coefficients involved in the generation of stresses. The samples were three types of non-crystalline materials (glass) with different sizes. The samples were alternately mounted on the heater at room temperature. The heater was turned on and at the same time registration of the mechanical stress value in the sample as a function of time began. The measurements were performed in several coordinates of the sample along the heat flux direction. The obtained curves were characterized by their own mechanical stresses amplitudes, the times of observation of the maximum and alternating sign. Features of the characteristics can be associated with the thermoelastic properties of the samples: optical, mechanical, and thermal. The thermal diffusivity was determined after the imaging of the mechanical stress extremes in the coordinate-time dependence. The results obtained make it possible to evaluate the values of internal mechanical stresses in any spatio-time coordinates of the samples, the rate of the heat flux propagation, and the visualization of the process of the heat flux propagation in materials or products, including those with internal defects.

pdf


References
  1. D. M. Freїk, M. O. Galushhak, A. І. Tkachuk, Prykarp. vіsn. NTSh 1(13), 137 (2011).
  2. M. O. Haluschak, V. G. Ralchenko, A. I. Tkachuk, Phys. Chem. Sol. State 14, 317 (2013).
  3. Springer Handbook of Materials Measurement Methods, edited by H. Czichos, T. Saito, L. Smith (Sturtz AG, Würzburg, 2006);
    CrossRef
  4. D. M. Freїk, R. Ja. Mihajl'onka, V. M Klanіchka, Fіz. Khіm. Tverd. Tіla 5, 173 (2004).
  5. A. D. Stuskes, R. P. Shasmar, J. Appl. Phys. 30, 930 (1959).
  6. J. Francl, W. D. Kingery, J. Am. Ceram. Soc. 37, 80 (1954).
  7. H. M. Rosenberg, Phil. Trans. Roy. Soc. London A 247, 441 (1955);
    CrossRef
  8. H. M. Rosenberg, Proc. Phys. Soc. London A 67, 837 (1954);
    CrossRef
  9. S. A. Friedberg, Temperature, Its Measurement and Control in Science and Industry (Reinhold, New York, 1955).
  10. A. S. Ohotin, A. S. Pushkarskij, V. V. Gorbachev. Teplofizicheskie svojstva poluprovodnikov (Atomizdat, Moscow, 1972).
  11. A. V. Ioffe, A. F. Ioffe, Zh. Tekh. Fiz. 22, 2005 (1952).
  12. A. V. Ioffe, A. F. Ioffe, Zh. Tekh. Fiz. 28, 2357 (1958).
  13. S. E. Gustafsson, E. Karawacki, M. N. Khan, J. Appl. Phys. 12, 1411 (1979).
  14. U. Hammerschmidt, W. Sabuga, Int. J. Thermophys. 21, 217 (2000);
    CrossRef
  15. E. H. Putley, Materials Used in Semiconductor Devices (Interscience, New York, 1968).
  16. И. И. Балмуш, З. М. Дашевский, А. И. Касиян, Термоэлектрические эффекты в многослойных полупроводниковых структурах (Штиинца, Кишинев, 1992).
  17. Термоэлектрические материалы и преобразователи, под ред. А. И. Харчевского (Мир, Москва, 1964).
  18. В. О. Повгородний, Двигатели и энергоустановки аэрокосмических летательных аппаратов 10, 207 (2011).
  19. В. А. Калинин, Экспериментальное изучение явлений связаной термоупругости и теплопроводности твёрдых тел (УПЛ РГУ, Ростов, 1983).
  20. А. Л. Бухгейм, Введение в теорию обратных задач (Наука, Новосибирск, 1988).
  21. I. E. Matyash, I. A. Minailova, O. N. Mishchuk, B. K. Serdega, Phys. Solid State 56, 1494 (2014);
    CrossRef
  22. I. Minailova, I. Matyash, B. Serdega, V. Maslov, N. Kachur, Int. J. Nano Res. Appl. 2, 93 (2014).
  23. I. Matyash, I. Minailova, B. Serdega, I. S. Babichuk, J. Non-Cryst. Sol. 459, 94 (2017);
    CrossRef
  24. L. Fabbri, P. Fenici, Rev. Sci. Instr. 66, 3593 (1995);
    CrossRef
  25. I. V. Blonskij, V. A. Tkhoryk, M. L. Shendeleva, J. Appl. Phys. 79, 3512 (1996);
    CrossRef
  26. R. E. Taylor, K. D. Maglic, Compendium of Thermophysical Property Measurement Methods (Plenum, New York, 1984).
  27. I. E. Matyash, I. A. Minailova, O. N. Mishchuk, B. K. Serdega, Phys. Solid State 55, 1087 (2013);
    CrossRef
  28. Я. Б. Зельдович, Ю. П. Кайзер. Физика ударных волн и высокотемпературных гидродинамических явлений (Наука, Москва, 1966).
  29. О. Savvova, G. Voronov, V. Topchyi, Yu. Smyrnova, Chem. Chem. Technol. 12, 391 (2018);
    CrossRef
  30. E. I. Suzdal’tsev, Refract. Indust. Ceram. 43, 103 (2002).
  31. N. P. Bansal, R.H. Doremus, Handbook of Glass Properties (Academic Press, New York, 1986).
  32. R. A. Paquin. Materials for Optical Systems. Optomechanical Engineering Handbook (CRC Press LLC, Boca Raton, 1999).