Journal of Physical Studies 24(1), Article 1902 [10 pages] (2020)
DOI: https://doi.org/10.30970/jps.24.1902

MAVKA: PROGRAM OF STATISTICALLY OPTIMAL DETERMINATION OF PHENOMENOLOGICAL PARAMETERS OF EXTREMA. PARABOLIC SPLINE ALGORITHM AND ANALYSIS OF VARIABILITY OF THE SEMI-REGULAR STAR Z UMa

K. D. Andrych{1,2} , I. L. Andronov{1} , L.  L. Chinarova{3,1} 

{1} Department of Mathematics, Physics and Astronomy, Odesa National Maritime University, Ukraine,
e-mail: tt\_ari@ukr.net
{2} Department of Theoretical Physics and Astronomy, Odesa I. I. Mechnikov National University, Ukraine,
e-mail: katyaandrich@gmail.com
{3} Astronomical Observatory, Odesa I. I. Mechnikov National University, Ukraine,
e-mail: llchinarova@gmail.com

Received 17 December 2019; in final form 20 January 2020; accepted 28 January 2020; published online 09 April 2020

Advanced MAVKA software for the approximation of extrema observations is used to analyze the variability of the brightness of pulsating and eclipsing stars, but may be useful in analyzing signals of any nature. A new algorithm using a parabolic (quadratic) spline is proposed. In contrast to the traditional definition of a spline as a piecewise-defined function at fixed intervals, a spline is proposed to be divided into three intervals, but the positions of the boundaries between the intervals are additional parameters. The spline defect is 1, that is, the function and its first derivative are continuous and the second derivative can be discontinuous at the boundaries. Such a function is an enhancement of the ``asymptotic parabola'' (Marsakova and Andronov 1996). The dependence of the fixed signal approximation accuracy on the location of the boundaries of the interval is considered. The parameter accuracy estimates using the least squares method and the bootstrap are compared. It is recommended to use the difference between the 0.975 and 0.025 percentiles (divided by $2\cdot1.96$) as the accuracy estimate of a given parameter in the bootstrap method.

The variability of the semi-regular pulsating star Z UMa is analyzed. The presence of multicomponent variability of an object, including four periodic oscillations (188.88(3), 197.89(4) days and halves of both) and significant variability of the amplitudes and phases of individual oscillations is shown. The approximation using the parabolic spline is only slightly better than the asymptotic parabola for our sampling of the complete interval. It is expectedly better for larger subintervals. The use of different complementary methods allows us to get a statistically optimal phenomenological approximation.

pdf


References
  1. В. П. Цесевич, Переменные звёзды и способы их исследования (Наука, Москва, 1971).
  2. Нестационарные звёзды и способы их исследования. Том 3. Затменные переменные звёзды, под. ред. В. П. Цесевича (Наука, Москва, 1971).
  3. Методы исследования переменных звёзд, под ред. В. Б. Никонова (Наука, Москва, 1971).
  4. Звёзды и звёздные системы, под. ред. Д. Я. Мартынова (Наука, Москва, 1981).
  5. J. Kreiner, Chun-Hwey Kim, Il-Seong Nha, An Atlas of O--C Diagrams of Eclipsing Binary Stars (Wydawnictwo Naukowe Akademii Pedagogicznej, Krakow, 2001).
  6. L. L. Chinarova, I. L. Andronov, Odessa Astron. Publ. 13, 116 (2000).
  7. BRNO O--C Gate, http://var2.astro.cz/ocgate/
  8. BAV, https://www.bav-astro.eu/index.php/veroeffentlichungen/lichtenknecker-database/lkdb-b-r
  9. AAVSO, http://aavso.org/
  10. OEJV, http://var.astro.cz/oejv/
  11. K. K. Kwee, H. van Woerden, Bull. Astron. Inst. Netherlands 12, 327 (1956).
  12. I. L. Andronov, Publ. Astron. Inst. Czechoslov. Acad. Sci. 70, 161 (1987).
  13. V. V. Breus, Odessa Astron. Publ. 20, 32 (2007).
  14. V. I. Marsakova, I. L. Andronov, Odessa Astron. Publ. 9, 127 (1996).
  15. I. L. Andronov, ASP Conf. Ser. 335, 37 (2005).
  16. I. L. Andronov, V. I. Marsakova, Astrophys. 49, 370, (2006);
    CrossRef
  17. I. L. Andronov, M. G. Tkachenko, L. L. Chinarova, Astrophys. 60, 57 (2017);
    CrossRef
  18. Z. Mikulášek, Astron. Astrophys. 584, A8 (2015);
    CrossRef
  19. K. D. Andrych, I. L. Andronov, L. L. Chinarova, V. I. Marsakova, Odessa Astron. Publ. 28, 158 (2015).
  20. K. D. Andrych, I. L. Andronov, L. L. Chinarova, Odessa Astron. Publ. 30, 57 (2017);
    CrossRef
  21. K. D. Andrych, I. L. Andronov, Open Eur. J. Variable Stars 197, 65 (2019).
  22. AFOEV, http://cdsarc.u-strasbg.fr/afoev/
  23. I. L. Andronov, Odessa Astron. Publ. 14, 255 (2001).
  24. I. L. Andronov, A. V. Baklanov, Astron. School Rep. 5, 264 (2004);
    CrossRef
  25. I. L. Andronov, L. L. Chinarova, preprint arXiv: 1910.08799 (2019); Astron. Astrophys. Trans. (in press).
  26. Н. П. Корнейчук, Сплайны в теории приближения (Наука, Москва, 1984).
  27. Дж. Форсайт, М. Малькольм, К. Моулер, Машинные методы математических вычислений (Мир, Москва, 1980).
  28. Б. П. Довгий, А. В. Ловейкін, Є. С. Вакал, Ю. Є. Вакал, Сплайн-функції та їх застосування (Видавничо-поліграфічний центр "Київський університет", Київ, 2016).
  29. I. L. Andronov, Astron. Soc. Pacific Conf. Ser. 292, 391 (2003).
  30. B. Efron, Ann. Statist. 7, 1 (1979).
  31. B. Efron, R. J. Tibshirani, An Introduction to the Bootstrap (Chapman and Hall/CRC, 1993).
  32. M. Hollander, D. A. Wolfe, Nonparametric Statistical Methods, 2nd ed. (Wiley, New York, 1999).
  33. J. Shao, D. Tu, The Jackknife and Bootstrap, 2nd ed. (Springer, 1996).
  34. L. Brát, Z. Mikulášek, O. Pejcha, http://var2.astro.cz/library/1350745528_ebfit.pdf
  35. T. W. Anderson, An Introduction to Multivariate Statistical Analysis, 3rd ed. (Wiley, New York, 2003).
  36. I. L. Andronov, Odessa Astron. Publ. 7, 49 (1994).
  37. I. L. Andronov, ASP Conf. Ser. 292, 391 (2003).
  38. I. L. Andronov, L. S. Kudashkina, Astron. Nachr. 309, 323 (1988);
    CrossRef
  39. L. S. Kudashkina, Astrophys. 62, 556 (2019);
    CrossRef
  40. Л. С. Кудашкина, Кинем. физ. небес. тел 19, 193 (2003).
  41. I. L. Andronov, V. I. Marsakova, L. S. Kudashkina, L. L. Chinarova, Adv. Astron. Space Phys. 4, (2014);
    CrossRef
  42. L. S. Kudashkina, I. L. Andronov, Odessa Astron. Publ. 9, 108 (1996).
  43. I. L. Andronov, L. S. Kudashkina, Odessa Astron. Publ. 30, 93 (2017).
  44. I. L. Andronov, Kinem. Phys. Celest. Bodies 14, 490 (1998).
  45. L. L. Chinarova, Odessa Astron. Publ. 23, 25 (2010).
  46. L. S. Kudashkina, I. L. Andronov, Odessa Astron. Publ. 23, 6 (2010).
  47. I. L. Andronov, L. L. Chinarova, Częstochowski Kalendarz Astron. 2014, 10, 171 (2013); arXiv:1308.1129 (2013).
  48. I. L. Andronov, Astrophys. 55, 536 (2012);
    CrossRef
  49. I. L. Andronov et al., J. Astron. Space Sci. 32, 127 (2015);
    CrossRef
  50. M. G. Tkachenko et al., J. Phys. Stud. 20, 4902 (2016);
    CrossRef
  51. I. L. Andronov, L. L. Chinarova, W. Han, Y. Kim, J.-N. Yoon, Astron. Astrophys. 486, 855 (2008);
    CrossRef
  52. I. L. Andronov, K. D. Andrych, Odessa Astron. Publ. 27, 38 (2014).
  53. I. L. Andronov, Astron. Astrophys. Supp. Ser. 125, 207 (1997);
    CrossRef
  54. I. L. Andronov et al., ASP Conf. Ser. 511, 43 (2017).
  55. I. L. Andronov, V. P. Kulynska, Ann. Astron. Novae 1, 167 (2020), http://astronomianova.org/pdf/AAN1_2020.pdf ; preprint arXiv:1912.13096 (2019).
  56. I. B. Vavilova et al., Kinem. Phys. Celest. Bodies 28, 85 (2012);
    CrossRef
  57. I. B. Vavilova et al., Proc. Int. Astron. Union 12(S325), 361 (2017);
    CrossRef