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In this paper, we investigated the Fisk—Tait equation in interaction with an external magnetic field
in noncommutative space-time. The space-time noncommutativity is introduced through the Moyal—
Weyl product method. Consequently, we studied the continuity equation in both commutative and
noncommutative space-time; there we examined the influence of the space-time noncommutativity
on the current density quadri-vector. Moreover, we find that the total charge obtained from the
probability density is still indefinite even when space does not commute. Furthermore, we found the
spin current density in the two different spin directions. We also investigated the linking between
the fermions and the bosons in the Fock space using the Holstein—Primakoff transformation.
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I. INTRODUCTION

Over the years, particle equations for an arbitrary spin
were considered the subject for careful investigations.
That is why today we are interested in the relativistic
equations that describe the motion of spin-3/2 particles,
such as the relativistic Rarita—Schwinger equation (1940)
[1], the Fisk—Tait equation (1973) [2], Hurley’s field
equation [3], Bhabha—Gupta equation (Bhabha, Gupta
1952, 1954, 1974) [4, 5], the approach for arbitrary spin
equation by V. Bargman, E. P. Wigner (1948) [6]. Also
the Heisenberg equations of motion for the spin-3/2 field
(1977) [7] are applied to dynamic systems with constrai-
nts depending upon external fields, the Lagrange and
Heisenberg equations of motion are the same for the
quantized charged spin-3/2 field in the presence of a mi-
nimal external electromagnetic interaction. The Rarita—
Schwinger spin-3/2 equation in the weak-field limit is
obtained to satisfy the Heisenberg equations of motion.
This is similar to the case of spin-3/2 field minimally
coupled with an external electromagnetic field by Mai-
nland and Sudarshan (1973) [§].

As well recently, we have the link between the relativi-
stic canonical quantum mechanics of arbitrary spin and
the covariant local field theory by V. M. Simulik (2017)
[9] (where the found equations are without redundant
components). It has been confirmed that the synthesis
of the relativistic canonical quantum mechanics of the
spins-3/2 particle and antiparticle doublet is completely
similar to the synthesis of the Dirac equation from the
relativistic canonical quantum mechanics of the spin-
1/2 particle-antiparticle doublet. On the basis of the
investigation of solutions and transformation properti-
es with respect to the Poincaré group the obtained new
8-component equation is suggested to be well defined
for the description of spin s = 3/2 fermions, unlike
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the Rarita—Schwinger equation which has 16 components
and needs the additional condition.

The equation for particles of spin-3/2 originally was
given by Fierz and Pauli (I939) in spinor form [10], while
the Klein—Gordon, Dirac, and Proca equations provide
a relativistic description of the particles that have the
lowest spins cases (S = 0,1/2, 1 respectively).

For instance, the Rarita—Schwinger equation was
formulated for the first time by William Rarita and Juli-
an Schwinger, it was the most famous equation that
describes the motion of the spin-3/2 fermions. However,
in this research, we are interested in the Fisk—Tait equati-
on. Because the Rarita—Schwinger equation and some of
the mentioned equations at the top of the introduction
contain many problems, such as the problem of causali-
ty, where the wavefront propagation described by the
corresponding equation is greater and faster than that
of the light [11], and also the problem of the imagi-
nary energy. Unlike the mentioned equations, with Fisk—
Tait’s equation all of these problems almost have been
solved. To be clear, from the beginning all of the equati-
ons that describe the motion of spin-3/2 fermions have
the problem of indefiniteness of the total charge [12, 13]
including some exceptions such as in the case of the
Gupta equation [14], were the charge density is positive-
definite for some properties, as well as in the theory of
interacting spin-3/2 particle by T. Fukuyama and K.
Yamamoto [15], where they suppress redundant parti-
cles by making their masses infinite. But these choices
make the total charge in the free theory still indefinite.

Among the particles that have spin-3/2, we mention
the gravitino, the quasi-spin-3/2 particles from the pairs
of Cooper, and the baryon. This latter is a composite
subatomic particle, which is a combination of at least
three quarks such as u (up quark), d (down quark) and
s (strange quark) forming a baryon decuplet with spin-
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3/2, as in the case of baryons which are composed of one
type of quark (uuu, ddd,...), these can exist in J = 3/2
configuration. But in J = 1/2 is forbidden by the Pauli
exclusion principle. In the case of baryons which are
composed of three types of quarks (uds, ude, ...), these
can exist in both J = 1/2 and J = 3/2 configurati-
ons. Taking into account that the first omega baryon
discovered experimentally was the (2~ hyperon, made
of three strange quarks, in 1964 [16], then recently, in
2017 the LHCD collaboration announced the observati-
on of five new narrow 20 states decaying to ZF K~ (an
exceptionally large group of baryons) [17].

The baryons (strongly interacting fermions) are acted
on by the strong nuclear force and are described by
Fermi—Dirac statistics, which applies to all particles
obeying the Pauli exclusion principle. Therefore, the two
most studied groups of baryons are S = 1/2; L = 0
and S = 3/2; L = 0, which correspond to J = 1/2 and
J = 3/2, respectively. Although they are not the only
ones, it is also possible to obtain J = 3/2 particles from
S=1/2and L =2, as well as S = 3/2 and L = 2 [18].
Theoretically, the baryons can have a higher spin of 3/2.

The first known superconductor in which the quasi-
spin-3/2 particles form Cooper pairs was created by
American and New Zealand physicists [19]. The un-
conventional superconductor is an alloy of Yttrium,
Platinum, and Bismuth, which is normally a topologi-
cal semi-metal, the study was carried out by Johnpi-
erre Paglione and his colleagues at the University of
Maryland, Ames Laboratory of the lowa State, Lawrence
Berkeley national laboratory, and the universities of
Otago and Wisconsin. In the alloy studied by Pagli-
one and his colleagues, the charge is carried by quasi-
particles of spin-3/2 particle type. These quasi-particles
result from interactions between the electron spins and
the positive charges of the atoms that compose the alloy;
this influence is called the spin-orbit coupling and it is
especially powerful in this material. The spin-3 state,
which combines the moments of rotation and the orbital
angular momentum, is the lowest energy state.

The gravitino [20, 21| is the superpartner of the gravi-
ton, predicted by the theories of the supergravity (this is
a gauge fermion mediating supergravity interactions, and
its existence is only a hypothesis). This spin-3/2 fermi-
on obeys one of those equations mentioned at the top of
the introduction, and in supersymmetry theory (SUSY)
it is assumed that each fundamental particle has a
superpartner. For a fermion (a particle with half-integer
spin) such as the electron, its superpartner would be a
particle with an integer spin, it is the selectron. For an
integer spin particle such as the photon, its superpartner
would be a half-integer particle called photino. For the
quantum of gravitational force, in SUSY when the parti-
cle carrier is the graviton with spin-2, its superpartner is
called the gravitino with spin-3/2; such theory is called
the Gauged Super Gravity theory.

For many years, there has been interest in the study of
spin-3/2 particles in as much detail as has been done for
the spin-1/2 particles. So, our work can be considered a
contribution that may help in the study of the spin-3/2
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particles domain.

The goal of this work is to focus on the Fisk—Tait
equation in a noncommutative space-time. Then we
extract the continuity equations in both commutative
and noncommutative space-time through the classical
method, not using Lagrangian to extract the current
density. Next, we study some additional contributions,
such as the current density of the spin, also about how
one can link the fermions with bosons in Fock space using
the Holstein—Primakoff representation.

II. THE SPIN-3/2 EQUATION IN AN
EXTERNAL MAGNETIC FIELD IN
NONCOMMUTATIVE SPACE-TIME

A. THE FISK-TAIT EQUATION

For the concept of the product, we shall always sum
over repeated indices. For example A*B,, = g"" A, B,, =
AgBy — AB, with Greek letters u, v, A being 0,1,2,3
and g" = diag(1l,—1,—1,—1) is the metric tensor in
Minkowski space-time. We set i = ¢ = 1 (natural units).

Recently, Fisk and Tait proposed an equation for
spin-3/2 particles in 1973 [22], and they have shown
that their equation remains causal even with minimal
electromagnetic coupling, and made it free of other types
of difficulties by which the Rarita—Schwinger formalism

is plagued.
The wave function employed is a 24-component anti-
symmetric tensor-spinor WA¥ = —W¥ Tt transforms

according to the following Lorentz group representation
3 3 1
D(0,= D(=,0 D=1
CHECORUCD
1 1 1
oo (18en(o2)en(bo). o

with p = v we have U#* = 0, and the used wave function
is as follows

0 \:[101 \1/02 \:[103
7\1101 0 \I/12 \IJ13
_\1102 _\1112 0 \IJ23 . (2)
_\1103 _\1113 —\1123 0

P =

With the quadri-vector of the electromagnetic field
A, = (Ao, A), the electromagnetic field tensor is defined
as F,, = 0,A, — 0,A,. In the presence of an external
electromagnetic field, the wave function in commutative
space-time obeys the following covariant equation [23]

(Tr + mBY"™, r7 =, (3)

with 7y = py + €Ay, pa = i((’)/axA) and the matrices
(FA)W and B*Y are given by
po p

B = g'.9"%, (4)
w4 1 o
(M) e = =37°950% = 37 (909" =709

(9% =7 95 9% — 9% + 979" -(5)

Wl =

+
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The gamma matrices obey the following Clifford
covariant algebra

VY A =291, oM = 5 (Y —vt), (6)

1 0 5

0~14243

where 7 = Y,y =

4 1
mPH — g’VAWA‘P“” + oA (Ve T — ARy UVT) +

3

The employed wave function tensor-spinor is
decomposed in two wave vectors components as

"-(3).
X

G = (00,002, 00), oy = (0,00 w12) (s)

The spin-3/2 parts of the wave function are

1 1
(CEYE :¢+§’Y(’ﬂ/))a X 3/2 :XJrg’Y(’YX)a 9)
with the subsidiary conditions yt3/2 = vx3/2 = 0.
In case of a constant real magnetic field, we have the
following expression

< _Oo_ g) Note that 7° is Hermitian, and ~ is anti-

Hermitian.

Using Eqgs.(4, 5), the Fisk-Tait equation in a more
detailed form is given by

1
5 (U — 3 mpUPH — WP ) = 0. (7)

(

where H is a constant real magnetic field oriented along
the axis (Oz). This present physical system is often
referred to as the Landau system. For this problem, a
convenient choice of the electromagnetic field vector is
the following symmetric gauge

A= ﬂ(iyv'rao)a

5 with Ay = 0. (11)

For simplicity, we may choose Landau gauge to reduce
A to one component such that either
A=H(0,2,00 or A=H(-y,0,0). (12)

It should be stressed that the expression of A in
the symmetric and Landau gauges is obtained by usi-

8 8 ,E[ 8 ng Eq. (10). Therefore, the Fisk-Tait equation (3) goes
Fo=|0_% 00l (10)  to
0 0 00 |
(FA)*;”U pAUP7 — e Ay, (r’“)"p”o P+ mBH WP =0, k=1,2,3, (13)
with
k\HY 4kuu lk;t v v m 1p,kv v k n ki v kv n
(%), = —37"9%9'% — 37 (Y"v09", — 7 109") +3 ("9%9% =" 95a% — 9 gt + 9 edl) - (14)

In the general case of a non-constant magnetic field, we
introduce a function depending on x in the Landau gauge
as As = xH f(x) which gives us a non-constant magnetic
field. The magnetic field can be calculated easily using
H =V x A which gives [24]

H(x) = (a:?—l;;f () +Hf (a:)) es. (15)

The above equation represents a special kind of non-
constant magnetic fields. If we specify f(z), we obtain
different classes of the non-constant magnetic field. If we
take f(x) = 1, in this case we get a constant magnetic
field. Let us consider f(z) = 1 (1—¢e™®) to obtain an
exponentially decaying magnetic field. Of course, a multi-

(

tude of other possibilities exists, so that Eq. (15) goes to
H(z) = (He ) es. (16)

B. THE FISK-TAIT EQUATION IN
NONCOMMUTATIVE SPACE-TIME

The noncommutative geometry [25-27] is the theory
in which space may not commute anymore, so that one
deals with a 4d noncommutative space-time (NCST).
The usual space-time coordinates x* are replaced by the
operators Z# which satisfy the commutation relations
28]

[@M’i.l’] :i@NV7 (//’V: 07"'73)a (17)
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where the noncommutativity parameter is a real-valued
antisymmetric constant matrix with a dimension of
[length?]. And the uncertainty relations AZHAZY >
|©#”] /2 are compatible with Eq. (17). For some
studies about noncommutative systems concerning the
noncommutative parameter, there are some experiments
that have linked the noncommutative parameter scale to
O ~ 4.10~*'m? (which corresponds to © ~ 10~2TeV?).
This value corresponds to the upper bound on the
fundamental coordinate scale [29], this bound will be
automatically canceled when the magnetic field used in
the experiment is weak B =~ 5mG. For our needs, in
the context of the field theory, it is more practical to
introduce the noncommutative scale A, by [30]

(18)

J

(f*g)(x)

i

We want to emphasize that the non-commutative field
theories for the low energies (OE? < 1) or the slowly
varying fields reduce to their commutative version (6 =
0) due to the nature of the Moyal *-product.

It is well known that the noncommutative coordinates
operator Z* is linked to the commutative one through
the Heisenberg—Weyl algebra in terms of the following
Darboux transformation

orv

= at — ——py, p* =p".

g (20)

The variables z*, p* satisfy the usual canonical

J

f(z)g(x) + Z <;'> (2> o oY, 0 f(2)0y, ... Ou ().
n=1 :

were ¢V is a dimensionless antisymmetric tensor, where
the components are O(1). A, represents a characteri-
stic energy scale for the noncommutative theory which
is necessarily quite large.

We would like to note that, it would be quite well to
approach the problem via the Seiberg-Witten maps if
we have an electromagnetic field interaction. But whi-
le we have a magnetic field interaction, we will follow a
quite standard approach that has been widely used in
the literature on noncommutative quantum mechanics
(NCQM); which depends on obtaining a noncommutati-
ve version of a given field theory, and is based on replaci-
ng the product of the fields by the Moyal-Weyl product
(%-product) defined as [31-33]

1
x| 30,002,0:.| F5,)0(0) .

(19)

(

commutation relations in QM. In what follows, we study
the dynamic equation in NCST for the case of constant
and non-constant magnetic fields using the Landau
gauge. The Fisk—Tait equation in NCST is written as
follows

[P ps + mBL, } wPe

eI Ax(z) » U7 () = 0, (21)

where the *-product is a realization of algebra (19). One
can write the noncommutative part as

v v ) v 1
(D) Ax(@) £ 07 (@) & (1Y) A7 + 2077 (D) 9, { A} 95077 — = (0°7)7 (0a)" {15,413} (9)° W7

1 Z " a a 14
+23 <n,> (2) Oub @b, 0, (T,

However, one must pay attention to the ordering issues
that can arise. In addition, with the help of Eq. (20), one
can check that the expression (22) can be rewritten as

(F’\)’Z; Ay (z)x 0P () = (TN A\(@H) 0P (2). (23)

po
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A} 0y, ..

By, P (22)

1. CASE OF A CONSTANT MAGNETIC FIELD

To the first order of O, taking into account the case
of potential Ay = Hzx, the derivations in algebra (22)
roughly stop in the first order of ©, then the approxi-
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mation gives
{(C)opa +mBl } U7 — eHa (12)" 0o
(24)
— S HO (12)" D {x} 5077 +0(67) = 0.
We can see that to this order, our noncommutative

Fisk—Tait equation suggests the following quantity as a
noncommutative correction

ie P v o
2 HO o(r2) {a} 907
e

S HOV (%)) 9507, (25)

1

the most important feature of this approximation is its
simple character, which allows one to work simply to test
the noncommutativity effect on the total charge through
the continuity equation later, without having to worry
about the issues coming from the arising series of the
*-product.

2. CASE OF A NON-CONSTANT MAGNETIC FIELD

Using Eq. (12) and Eq. (16) would lead to a non-
constant magnetic field Ay = Hxze™*, which provides a
noncommutative Fisk—Tait equation for all orders of ©,
as follows

1 n
{(@M)1 x + mBhY L W7 — (T2 <n,> () Oub @Y, . Dy {Hre "} Dy, ... B WP =0, (26)
n=1 :

2

below we discuss some cases of the noncommutative correction part:

To first order of © (n = 1), the approximation yields

01 = 507 (12)" 0, {Hae "} 95077 = SHO' (1) (1 — ) 705 0. (27)

To second order of © (n = 2), with a; = ay =1, by = by = 3, the approximation yields

1
Ca =i+ SH(0") (TN, (2= @) 77 (95)° W (28)

To third order of © (n = 3), with a1 = as = a3 =1, by = by = b3 = 3, the approximation yields

Cs=Co+ 4%% (0') (T (3 —x) e (9)° WP, (29)

To calculate the nt" order term, we consider that, a; =
as=...=ap,=1,by =by=...=b, =3, we have

1 /i\"
Cn — Cn—ln'(2>

x (OY)" (TN (n—x) e~ (9)" U7, (30)

From the comparison between commutative and
noncommutative systems, it is widely obvious that the -
product causes noncommutative corrections in the Fisk—
Tait equation due to the presence of the magnetic fi-
eld. These correction are controlled by the form and
type of the magnetic field. It can be shown that, in
NCST, if we take a constant magnetic field, the order
of the noncommutativity cannot be higher than the first
order. On the other hand, when we take a non-constant
magnetic field (at least to the form of the non-constant
magnetic field we have considered), it causes high orders
in noncommutativity, which produce an infinite series of
O.

In the noncommutative Fisk—Tait equation, the
appearance of terms proportional to explicit ©

(

parameter, in fact, is due to the noncommutativity effect
on the dynamical equation. In the case of a constant
magnetic field, we consider the appeared correction term
as a kind of potential. Therefore, we will see whether
the total charge obtained from the probability density
remains indefinite or no.

It should also be noted that the case of higher dimensi-
ons of © and a more general algebra are complicated, all
along with our physical systems involving both electrical
and magnetic potentials.

III. THE CONTINUITY EQUATION IN TWO
TYPES OF SPACE-TIME

A. THE CONTINUITY EQUATION IN
COMMUTATIVE CASE

The Fisk—Tait equation in the commutative space-time
is given by Eq. (7), with the following subsidiary condi-
tions

VY ¥ =0, w7, U =0. (31)
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The complex conjugate of Eq. (7) is
mu Ty _

4
St

+ (\I,Tpvﬂ;,yw _

W =

‘I’TWWZVTV _

3( \I/TVU T T#,YTA_F\I,T#G,YT,YTV,YTA)

\I/Tpvﬁ*/w; + \DTM‘W*V’}/T) 0. (32)

Here * and 1 stand for the complex conjugation of 7 (even the potentials) and the wave functions, tensors respecti-

vely.
By multiplying \IILU by Eq. (7), we have

T v
WA 3

(\I/T yH WPV —

OJ\H

Multiplying Eq. (32) by ¥, we obtain
v 4 gt et 1
mW¥ \IJ“V — 5\]? ™Y \Il;ul + 3 3

L :
3 (U,

With some minor simplifications and by subtracting Eq. (33) from Eq. (34

xI/T,meIW + 3@

‘I’Lu’yyﬂpq’p“ _

_ \I/TPM’JTZ’VTV \I’w

T A (70 077 + 7y, B

Uy UPY + Wy, ) = 0. (33)

( \IJTVU’VT To TA + \IJTHU'YT’YTV'VT/\) ﬂ—iq}uv

— Uity + Uty ) = 0. (34)

), and by taking 7y = i0) for simplicity,

which means considering the Fisk—Tait equation without the electromagnetic interaction, we find

4 2 2 2
VAT (—BWWWAW = U BT SR — S Aw,;w) = 0. (35)
The above equation is the continuity equation, where the current density quadri-vector J7* = (J°, J*) is
2 — LV e 1274 e 1174 AV = 1174
T=-3 (27" P+ TP Wy = T 0+ T, ) T = we, (36)
The corresponding conserved quantity is the total probability
2
J0 = -3 (201D, + Uy 70, — B0y W0 4 w10 0P ) (37)

where J° is the probability density for finding a particle at a particular position, and J* is the current density of
the spin-3/2 particle. It is clear that the total charge Q obtained from the probability density is indefinite

4 ... .. 2 2 ) )
Q= /j0d3:c = /d?’x (3\1/%1/” + 20 00l gqﬁ”m’“xpﬂ + 3x1ﬂm%fyh11ki> : (38)

Using Egs. (8, 9), we obtain

Q= 2/d3x (1#2/21# 3/2 — XT3/2X 3/2) . (39)

For all the spin-3/2 equations of motion, the problem
of total charge indefiniteness remained [12], while in the
case of Gupta equation [14] with some conditions, the
charge density is positive-definite. However, generally
the total charge in the free theory is indefinite, which
means that the condition for the positivity of the charge
is first noted, then it is shown that this condition has
to be violated if the causality of propagation is to be
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ensured. The lack of a positive definite probability densi-
ty suggests that many of the problems that plague the
attempts to quantize spin-3/2 fields are also to be found
in the classical field equations.

It should be noted, when considering the Fisk—Tait
equation in interaction with EMF (which means taking
mx = px + €A, ), that the calculations of the continuity
equation lead to getting a correction term (of probabi-
lity density type) in the continuity equation and the
total charge expressions. We are going to show this in
the next subsection together with the noncommutativity
influence.
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B. THE CONTINUITY EQUATION IN NONCOMMUTATIVE CASE

The Fisk-Tait equation in NCPS is given by Eq. (24), and its complex conjugate is given by

4
mut _ 3\I/T“”p* AT+3( \I,Tw T T”VT’\-l-‘I’TWWTVTV’yT’\)
1
§ (\I,Tpvaw \Iij:u' * Tv \I;Tpv *p T_|_\1/Tpupw,y1‘)
—eHa W7 (172)" 4 7—[@15 (@p0r7) (121" = 0. (40)

Note that it is enough to consider the simplest case concerning the magnetic field As = Hzx to study the total

charge within the noncommutativity in an explicitly solvable model. With py = 90y, we multiply \IIIW
q. (24) from Eq. (40)¥,,,, we obtain

and Eq. (40) by ¥,,,. Therefore, by subtracting \IJLVE

by Eq. (24)

4 v 2 v 2— v 2 v
iOx [3\11" P = ST P 0 U + ST, ) - AI/A \I/py}
o (T2\HV 2\ g po
+eHe U7 (012)" W, — 0], (1)) v (41)
_ifq_[@w [\1,1‘ (FQ)W DpWP? + \I/T""B (FT2) /] } =0
2 i w '
We contract the above equation as follows
AT+ + G =0. (42)

Eq. (42) will be recognized as the noncommutative continuity equation; we denote the separate terms in it as follows

4 LV N N 2 v
..7)\ = S\I/l /\\I"lw - §\IJA )\ VYo Vo + 3\Ill \Ij)\ 3\11)\ ar
2 = eMa {WU ()" v, — v, (13" \IIW} (43)
—e v o o nv
2= S HOY W, (%) 900 + W7 ()" 0, ]

J? is the current density quadri-vector of the spin-
3/2 particle. The quantity ¢? is a term of the probabi-
lity density type; this quantity is related to the effect
of the electromagnetic field interaction on the Fisk—
Tait equation. This quantity emerged merely as a
term containing the constant magnetic field contri-
bution, consequently after extracting the commutati-
ve or noncommutative continuity equation, this contri-
bution being responsible for generating this probabili-
ty density quantity. The correction term (2. is a new
noncommutative quantity of the current density type,
the existence of this quantity corresponds to the explicit
space noncommutative parameter which is involved in
the obtained noncommutative continuity equation, that
is because of the influence of the space noncommutati-
vity on the spin-3/2 particle motion equation. And such
quantity appeared as a term which is proportional to
the noncommutativity parameter O, then after extracti-
ng the noncommutative continuity equation, this term
was responsible for generating the new quantity term of
the current density type. Once the magnetic field is null,

(

the quantities ¢? and (2, will disappear.

We see that the total charge Q obtained from the
probability density J° still is indefinite even when space
does not commute. To demonstrate its indefiniteness, it
is enough to consider the rest frame in which p = 0. Then
Eq. (31) reduces to

¥ ¥ =0, 3P% =0, (44)
so that
e L / PPt . (45)

It is easily seen that relations (44) do not eliminate
the indefiniteness of Q"°.

IV. AN ADDITIONAL CONTRIBUTION

There are several ideas from electricity, magnetism,
and nuclear physics that suggest the contribution of the
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spin and the current density. In this section, we try to
highlight some of those ideas. We have S = (57, 52, .53);
knowing that Sy, .52, 53 have a block diagonal form, and
while $ = 3/2, dim[S] = 2(2) + 1 = 4, this leads to
obtaining the following spin-eigenvalues

—3/2 <ms < +3/2, (46)

which means to have

(47)

l\')\OJ

G

27 272
with Si = Sl + iSQ, [Sl,iSQ] = 253 and {52753, Si} is
a complete set of commuting observables (CSCO), and

according to our representation (1), we restrict ourselves
only to the following eigenvectors
0 1
) 2 )

3 3 1 1
Z Z -1 1. =
072>7 27O>7 27 >’ ’2>7

A. THE SPIN CURRENT DENSITY

0,;>. (48)

We are interested in the spin-eigenvalue mg = 2, and

2
from Eq. (8) our wave function with spin is

Wy(z,t)_<g %?) ( > (49)
B = (D) (50 ) = (W ).

This suggests that the probability density function is
used to find the spin-3/2 particle (at a point  and a
moment t) and also to determine the current density, in
which it is composed of the parts of the two different spin
directions.

The orbital motion of the spin-3/2 particle causes
the current density, where the spin causes a magnetic
moment, in which it can be expressed by its correspondi-
ng current. Besides, we term this part of the current
density as Js (spin current density), and this cannot
occur in the continuity equation because of the indefini-
teness of the total charge.

We determine the spin current density using Maxwell’s
equation, where

rot B = 4w (J +rot (M)) . (50)

We have to replace the magnetization (M) by the average
density of the magnetic moment, the up-direction part
of the magnetic dipole is given by

(My) = —pupi Sy, (51)
with

1
— T
S 5 g cloases, (52)

«,$=1,2,3

o1,09,03 are the usual Pauli matrices, cz, ¢; are creati-

on and annihilation operators, n; = cjci is the number
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operator of spin-3/2 particles at the site i. And the intri-
nsic magnetic moment p = 3-8 [34], which relates the
magnetic moment to the spin angular momentum, that
corresponds to the gyromagnetic ratio Bim; the highest
eigenvalue of the operator u is given by

o = A0 (53)
Using the above properties, Eq. (50) becomes
rot By = 4m (J4 — prot (¢S¢y)) (54)
with
Jrg = —prot (ViSi), (55)

knowing that the spin current density is composed of the
parts of the two different spin directions. For another
direction, the spin current density is

Jyg = —prot (x;Sxy), (56)

We note that for the up-direction wave function
components, we have only {W¥9 W02 ¥} " but for
the down-direction wave function components, we
have{W23 W3l yl2},

Knowing that the obtained spin current density cannot
be affected by the noncommutativity in space-time,
unlike the considered Maxwell’s equation, it would be
influenced by the noncommutativity in space-time as

rot B'N =47 (‘]Tl« + «73@¢ + rot <M'N>) . (57)

B. THE HOLSTEIN-PRIMAKOFF
TRANSFORMATION

As mentioned in the introduction, the graviton wi-
th spin-2 in SUSY would have a superpartner called
the gravitino with spin-3/2. We want to show how
to connect the spin operators from boson with fermi-
ons spin operators in Fock space using the Holstein—-
Primakoff (HP) transformation [35]; the idea here is to
connect a system of 2N + 1 fermions onto a system of N
bosons. This calculation can be found in books, and it
has been considered originally by C. E. Alonso and his
colleagues in 1992 [36]. The spin and angular momentum
eigenfunctions are labeled with the quantum numbers
n,m,l,j...

The fermion space is defined in terms of fermion creati-
on (annihilation) operators cjj (¢ij). The boson-fermion
space is defined in terms of boson creation (annihilation)
operator B;; (Bij), with new fermion creation (annihi-

lation) operators a;;(aij), knowing that the boson and
the fermion operators commutate with each other. With
[B”,Baﬁ] = 0;a0;3—0i80ja, [Bij, Bag] = 0, the Holstein-
Primakoff image of the single-fermion creation operator
¢t . is given by [37]

s1M1

+ 3 +
( 51m1 HP - {T91m152m2 827YL2 + B81M182m2a32m2}’

S2MmM2

(58)



ON THE FISK-TAIT EQUATION FOR SPIN-3/2 FERMIONS INTERACTING...

with the operator 7 = +/I — BT B, that characterizes
the HP boson expansion and is to be interpreted by its
Taylor series expansion, (Cj_j)q.['p denotes the Holstein-
Primakoff image of c;;

The first-order of the expansion of 7 (square-root
function) is obtained

1
7—81m182m2 = 58132577117”2 - §(B+B)81m182m2' (59)

J

<B+B)S1m182m2 = Z lllga(—1)33+m1+l2+a+5X.L1.

Sgl1l2aﬁ

We can determine the expression of the boson spin
components in the Fock space

SS =5- Np,
ST = /25 — nyb, (61)
ST =bt2s —ny,

with ny = bTb=1,2,3,... . Knowing that J = \/2j + 1,
which describes the interaction between spins, b is a
boson operator, says Holstein—Primakoff. The operator
ygr creates the collective boson of multipolarity b , which
is given by

1
’yiﬁ - 2 ZX§132B5182(1§, (62)
J1J2
and X¢ ,, are the structure coefficients of v}, By, s,a8
are the angular momenta coupled to boson creation
operators.
To link the quadrupole operator using the HP expansi-
on, it is usually possible to directly use the image of the
particle-hole fermion operator, which is given by

(C;rcj)HP = Z BZ/EBJ"C +a;aj. (63)
%

Non-physical states appear for n, > 2S5, as under
these conditions, the spin projection on direction 3 is
greater than S, so that the use of this spin representati-
on strongly has a meaning for the low temperature and
for large spin values (n; is very weak).

V. CONCLUSION

In conclusion, the space-time noncommutativity is
introduced in the Fisk—Tait equation and subsequently,
the continuity equation is obtained in the cases of
commutativity and noncommutativity, without forgetti-
ng that we have investigated the Fisk—Tait equation in
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In fact, the expansion of 7 (with BTB < 1) gives us
oo ai(BTB)". The Taylor series for the operator 7 is
expected to converge very slowly, so that its development
is likely to require many terms, since high order terms
in the series translate into many boson operators. Physi-
cally the utility of such approach is questionable, so that
J. Dukelsky and S. Pittel [38] proposed to accelerate the
convergence of the series by choosing a better initial value
for (BT B)g. This leads to Eq. (59), where

L s1  S2 « I Iy « NS
xi (o 6 ) (02 ) en ;. oo

NCST in two cases of potential types. In the first case, we
considered a constant magnetic field, but for the second
case, we considered a non-constant magnetic field. This,
in turn, is responsible for generating a new quantity
(for the first case) which is a correction of the densi-
ty type. We have shown in the present paper that the
noncommutativity in space-time affected the continuity
equation by causing a new noncommutative quantity of
the current density type. However, this effect does not
solve the problem of the indefiniteness of the total charge,
as expected. This leads us again to think about the diffi-
culties of this type of equations and their problems that
are almost endless. Therefore, the noncommutativity in
space-time is useless in this regard, contrary to its simpli-
city and its contribution to solving some problems in the
equations that describe the particles of simple spin such
as the Dirac equation.

The space-time noncommutativity effect is introduced
through the Moyal-Weyl product and under the conditi-
on © = 0, both the Fisk-Tait equation and the conti-
nuity equation in NCST return to that of the usual
commutative QM. Furthermore, we have shown in this
work the linking between the fermions and the bosons in
Fock space using the Holstein—Primakoff representation,
without forgetting that we found also the spin current
density in the two different spin directions.

The results of the present work can be used to expand
the study of the motion of the spin-3/2 particles in the
NCST. Finally, we point out that we plan to investigate
the reflexion and the transmission coeflicients depending
on these results, to investigate the Klein paradox.
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IIPO PIBHAHHSA ®ICKA-TENTA OJId ®EPMIOHIB 31 CIIIHOM 3/2, III0 B3BAEMOIIIOTH
I3 3OBHIIITHIM MATHITHUM ITOJIEM ¥ HEKOMYTATNBHOMY ITPOCTOPI-9ACI

Lnpsac T'aBam
Vwisepcumem Bpamis Menmypi, Koncmarnmuna, Anoscup

VY niit mpari gocsiakeno pisastaEs Picka—TeiiTa 11t hepMioOHIB, M0 B3aEMO/IIIOTH i3 30BHIINTHIM MarHiTHUM IO~

JIeM y HEKOMYTaTUBHOMY IpocTopi-daci. BBemeno nekomyrarusHicTh IpocTOpy Ta dacy MeTomoM Jo0yTKy Mostmm—

Beitns. [IpoanasiizoBaHo piBHSHHST HEIIEPEPBHOCTI IK Yy KOMYTaTUBHOMY, TaK 1 B HEKOMYTATUBHOMY IIPOCTOPI-Yaci.
Takoxk JOC/TiI?KEHO BIVIMB HEKOMYTATHBHOCTI IIPOCTOpPY-4acy Ha 4-BeKTOp I'yCTHHHU cTpyMy. TakoxK mIokasaHo,
IO TTOBHUI 3apsjl, OTPUMAaHUi i3 T'yCTUHU HMOBIPHOCTI, HEe € BU3HAUYEHUM, KOJIM IPOCTIp HeKOMyTaTuBHUi. Kpim

TOro, 3HANJEHO I'YCTUHY CIIHOBOIO CTPYMy yV JBOX DI3HMX HaIpsIMKax CHiHy. TakoxK JOC/iKEeHO 3B’SI30K Mix

depmionamu Ta 603oHaMu y mpocropi Poka 3a goromororo reperBopents: [oscreitna—Ilpumakosa.
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