Journal of Physical Studies 24(2), Article 2201 [6 pages] (2020)
DOI: https://doi.org/10.30970/jps.24.2201

LOW TEMPERATURE SCINTILLATION PROPERTIES OF Ga2O3

V. B. Mykhaylyk1 , H. Kraus2, V. Kapustianyk3,4 , M. Rudko3,4 , V. Kolomiets4

1Diamond Light Source, Harwell Campus, Didcot, OX11 0DE, UK
2University of Oxford, Department of Physics, Denys Wilkinson Building, Keble Road, Oxford, OX1 3RH, UK 3Scientific-technical and Educational Centre of Low Temperature Studies, Ivan Franko National University of Lviv, 50, Drahomanov St., UA-79005, Lviv, Ukraine
4 Faculty of Physics, Ivan Franko National University of Lviv,
50, Drahomanov St., UA-79005, Lviv, Ukraine

Received 02 January 2020; in final form 19 March 2020; accepted 13 April 2020; published online 23 April 2020

This work is devoted to the study of the luminescence and scintillation properties of an undoped Ga$_2$O$_3$ crystal over the 7-295 K temperature range. The samples were obtained using the edge-defined film-fed growth method. These investigations were performed in order to confirm that the investigated crystals really could be considered as promising scintillation detectors of ionising radiation. The steady-state X-ray luminescence was excited by a URS-55A X-ray tube with a Сu-anticathode tube. For the measurements of scintillation characteristics the crystal was placed in a helium constant flow cryostat and excited by $α$-particles from an $^{241}$Am source. Two emission bands observed in UV and blue spectral range are assigned to the radiative recombination of self-trapped excitons and donor-acceptor pairs, respectively. The scintillation light output of the crystal increases with cooling, reaching the maximum value of 19300 $\pm$ 2200 ph/MeV at 50 K, and then it decreases by 30 \% with further cooling to 7 K. It has been found that at room temperature an undoped Ga$_2$O$_3$ exhibits about one-third of the light output of a commercial LYSO-Ce scintillator. The detection efficiency of the crystal is lower in comparison with the best scintillators in the field. Nevertheless, taking into account the fact that the intrinsic defects play a major role in the emission of gallium oxide, we can predict that substantial improvement of the scintillation properties is likely to occur through the material doping and optimisation of the production technology. This finding evidences that undoped $β$-Ga$_2$O$_3$ can be used for scintillation detection over the wide temperature range. The measured kinetics of the luminescence decay possesses a recombination character with the corresponding decay time ($τ_{0.1}$), increasing from 1 to $1.8\times10^{-6}$\,s with cooling

pdf


References
  1. C. Dujardin, E. Auffray, E. Bourret-Courchesne, IEEE Trans. Nucl. Sci. 65, 1977 (2018);
    CrossRef
  2. T. Yanagida, Proc. Jpn. Acad. Ser. B 94, 75 (2018);
    CrossRef
  3. F. Maddalena, L. Tjahjana, A. Xie, Crystals 9, 88 (2019);
    CrossRef
  4. A. Lempicki, A. J. Wojtowicz, E. Berman, Nucl. Instrum. Methods Phys. Res. A 333, 304 (1993);
    CrossRef
  5. V. B. Mikhailik, H. Kraus, Phys. Status Solidi B 247, 1583 (2010);
    CrossRef
  6. X. Lu, Q. Li, G. A. Bizarri, Phys. Rev. B 92, 115207 (2015);
    CrossRef
  7. M. P. Prange, Y. L. Xie, L. W. Campbell, J. Appl. Phys. 122, 234504 (2017);
    CrossRef
  8. V. B. Mikhailik, S. Henry, M. Horn, J. Lumin. 134, 63 (2013);
    CrossRef
  9. V. Ryzhikov, N. Starzhinskiy, L. Gal'chinetskii, IEEE Trans. Nucl. Sci. 48, 356 (2001);
    CrossRef
  10. Z. T. Kang, C. J. Summers, H. Menkara, Appl. Phys. Lett. 88, 111904 (2006);
    CrossRef
  11. Y. Fujimoto, T. Yanagida, H. Sekiwa, Jpn. J. Appl. Phys. 50, 01BG04 (2011);
    CrossRef
  12. T. Yanagida, G. Okada, T. Kato, Appl. Phys. Express 9, 042601 (2016);
    CrossRef
  13. J. D. Vergados, H. Ejiri, F. Šimkovic, J. Mod. Phys. 25, 1630007 (2016);
    CrossRef
  14. A. H. G. Peter, V. Gluscevic, A. M. Green, B. J. Kavanagh, S. K. Lee, Phys. Dark Universe 5-6, 45 (2014);
    CrossRef
  15. A. Alessandrello, V. Bashkirov, C. Brofferioet, Phys. Lett. B 420, 109 (1998);
    CrossRef
  16. V. B. Mikhailik, H. Kraus, J. Phys. D: Appl. Phys. 39, 1181 (2006);
    CrossRef
  17. R. F. Lang, G. Angloher, M. Bauer, Astropart. Phys. 33, 60 (2010);
    CrossRef
  18. D. Poda, A. Giuliani, J. Mod. Phys. 32, 1743012 (2017);
    CrossRef
  19. O. Azzolini, M. T. Barrera, J. W. Beeman, Phys. Rev. Lett 120, 232502 (2018);
    CrossRef
  20. G. Angloher, A. Bento, C. Bucci, Eur. Phys. J. C 3184, 74 (2014);
    CrossRef
  21. G. Angloher, P. Bauer, A. Bento, Eur. Phys. J. C 79, 43 (2019);
    CrossRef
  22. S. E. Derenzo, E. Bourret-Courshesne, G. Bizarri, A. Canning, Nucl. Instrum. Methods Phys. Res. A 805, 36 (2016);
    CrossRef
  23. H. Aida et al., Jpn. J. Appl. Phys. 47, 8506 (2008);
    CrossRef
  24. V. B. Mikhailik, H. Kraus, Radiat. Meas. 49, 7 (2013);
    CrossRef
  25. V. B. Mikhailik, H. Kraus, J. Phys. Stud. 14, 4201 (2010).
  26. J. Ahman, G. Svensson, J. Albertsson, Acta Cryst. C 52, 1336 (1996);
    CrossRef
  27. S. I. Stepanov, V. I. Nikolaev, V. E. Bougrov, A. E. Romanov, Rev. Adv. Mater. Sci. 44, 63 (2016).
  28. G. Blasse, A. Brill, J. Phys. Chem. Solids 31, 707 (1970);
    CrossRef
  29. В. I. Васильців, Я. M. Захаркo, Я. I. Рим, Укр. фіз. журн. 33, 1320 (1988).
  30. L. Binet, J. Gourier, J. Phys. Chem. Solids 59, 1241 (1998);
    CrossRef
  31. T. Onuma, S. Fujioka, T. Yamaguchi, Appl. Phys. Lett. 103, 041910 (2013);
    CrossRef
  32. Q. D. Ho, T. Frauenheim, P. Deák, Phys. Rev. B 97, 115163 (2018);
    CrossRef
  33. F. A. Danevich, B. V. Grinyov, S. Henry, Nucl. Instrum. Methods Phys. Res. A 622, 608 (2010);
    CrossRef
  34. L. L. Nagornaya, F. A. Danevich, A. M. Dubovik, IEEE Trans. Nucl. Sci. 56, 2513 (2009);
    CrossRef
  35. A. N. Vasil'ev, A. V. Gektin, IEEE Trans. Nucl. Sci. 61, 235 (2014);
    CrossRef
  36. V. B. Mikhailik, S. Galkin, H. Kraus, J. Lumin. 188, 600 (2017);
    CrossRef
  37. T. Onuma, S. Saito, K. Sasaki, Appl. Phys. Lett. 108, 101904 (2016);
    CrossRef
  38. D. N. ter Weele, D. R. Schaart, P. Dorenboss, IEEE Trans. Nucl. Sci. 62, 727 (2015);
    CrossRef
  39. S. Blahuta, A. Bessière, B. Viana, IEEE Trans. Nucl. Sci. 60, 3134 (2013);
    CrossRef
  40. B. V. Grinyov, V. D. Ryzhikov, O. T. Sidletskiy, IEEE Trans. Nucl. Sci. 57, 1236 (2010);
    CrossRef