Journal of Physical Studies 24(2), Article 2501 [8 pages] (2020)
DOI: https://doi.org/10.30970/jps.24.2501

PULSED PLASMA SURFACE MODIFICATION OF GREY CAST IRON

Yu. G. Chabak{*} , T. V. Pastukhova , V. G. Efremenko{**} , V. I. Zurnadzhy , V. I. Fedun , E. V. Tsvetkova , A. V. Dzherenova 

Pryazovskyi State Technical University,
7, Universytets'ka St., Mariupol, UA-87555, Ukraine
e-mail: {*}julia.chabak25@gmail.com, {**}vgefremenko@gmail.com

Received 08 April 2020; accepted 12 May 2020; published online 29 May 2020

The work is devoted to the investigation of the effect of high-energy pulsed plasma treatment on the surface modification and tribological characteristics of grey cast iron with the initial microhardness of about 220 HV. The modification was performed in the air atmosphere using an electro-thermal axial plasma accelerator with an arc discharge voltage of 3.0 kV and 4.0 kV to produce a plasma flux with a power density of $1.0\cdot10^{9}$ W/m$^{2}$ and $1.75\cdot10^{9}$ W/m$^{2}$ respectively. The study was carried out using numerical modelling, optical (Eclipse M200 Nikon) and electron scanning (JSM-6510 JEOL) microscopy, EDX (JED-2300 JEOL), X-ray diffraction (X'Pert PRO PANalytical diffractometer with CuK$α$ source), microhardness measurement, and wear testing according to ‟Three-body abrasion” (Al$_{2}$O$_{3}$ sand) and dry-sliding ‟Ball-on-Disk” schemes. The results showed that a single plasma impulse with a power density of $1.0\cdot10^{9}$ W/m$^{2}$ led to a surface modification of up to 12 $μ$m depth without melting to form ultrafine-grained martensite with the microhardness of 359-652 HV. An increase in power density to $1.75\cdot10^{9}$ W/m$^{2}$ resulted in a modification of up to 28 $μ$m depth while the surface was melted to 10-12 $μ$m depth. Under the melting the graphite dissolved causing a carbon-enrichment of the melt with a consequential formation of ultra-fine ‟Ledeburite” eutectic cells and high-carbon martensite having microhardness of 697-817 HV. Plasma-induced surface dopping by cathode elements (W, Cu) through the melt resulted in the crystallization of globular carbide WC and in over-enrichment of ferrite by copper (of about 3 wt. \%). The solute trapping of copper in the ferrite lattice occurred due to the ultra-high cooling rate ($2\cdot10^{6}$ K/s) after the plasma-induced heating. The pulsed-plasma modification of grey cast iron led to a two-fold increase in its abrasive wear resistance while the dry-sliding friction coefficient was slightly increased too due to the worsening of self-lubrication caused by the graphite dissolution.

pdf


References
  1. O. V. Sobol et al., J. Nano-Electron. Phys. 11(1), 01003 (2019);
    CrossRef
  2. M. O. Vasylyev, B. N. Mordyuk, S. I. Sidorenko, S. M. Voloshko, A. P. Burmak, Metallofiz. Noveishie Tekhnol. 37(9), 1269 (2015);
    CrossRef
  3. V. Pidkova, I. Brodnikovska, Z. Duriagina, V. Petrovskyy, Funct. Mater. 22(1), 34 (2015);
    CrossRef
  4. M. O. Vasylyev, B. N. Mordyuk, S. I. Sidorenko, S. M. Voloshko, A. P. Burmak, Metallofiz. Noveishie Tekhnol. 39(1), 49 (2017);
    CrossRef
  5. A. D. Pogrebnyak, Yu. N. Tyurin, Usp. Fiz. Nauk 48 487 (2005);
    CrossRef
  6. V. G. Efremenko et al., Mater. Des. 126, 278 (2017);
    CrossRef
  7. A. Zhukeshov, A. T. Gabdullina, A. U. Amrenova, S. A. Ibraimova, J. Nano- Electron. Phys. 6, 03066 (2014).
  8. Yong Xiang et al., J. Mater. Process. Technol. 226, 238 (2015);
    CrossRef
  9. B. Sartowska et al., Vacuum 70, 285 (2003);
    CrossRef
  10. S. Yu. Kornilov, N. G. Rempe, Bull. Russ. Acad. Sci.: Phys. 83 1410 (2019);
    CrossRef
  11. Y. Yarali, O. H. Akbulut, M. Durman, Vacuum 122 (2015);
    CrossRef
  12. Yu. G. Chabak et al., Probl. At. Sci. Technol. Ser.: Plasma Phys. 110(4), 97 (2017).
  13. Yu. G. Chabak, V. I. Fedun, V. G. Efremenko, T. V. Pastukhova, B. V. Efremenko, Probl. At. Sci. Technol. Ser.: Plasma Phys. 123(5), 167 (2019).
  14. Yu. G. Chabak et al., J. Mater. Eng. Perform. 27, 379 (2018);
    CrossRef
  15. A. Gonzalez-Pociño, F. Alvarez-Antolin, J. Asensio-Lozano, Metals 9, 522 (2019);
    CrossRef
  16. A. Anishchenko, V. Kukhar, V. Artiukh, O. Arkhipova, MATEC Web Conf. 239, 06006 (2018);
    CrossRef
  17. V. G. Efremenko, Yu. G. Chabak, A. Lekatou, A. E. Karantzalis, A. V. Efremenko, Metall. Mater. Trans. A 47, 1529 (2016);
    CrossRef
  18. S. S. Aziz, A. S. Alwan, K. A. Abed, Biochem. Cell. Arch. 1, 1587 (2019);
    CrossRef
  19. A. R. Zulhishamuddin, S. N. Aqida, E. A. Rahim, AIP Conf. Proc. 1769, 030004 (2016);
    CrossRef
  20. N. Pagano, V. Angelini, L. Ceschini, G. Campana, Procedia CIRP 41, 987 (2016);
    CrossRef
  21. K. Y. Benyounis, O. M. Fakron, J. H. Abboud, A. G. Olabi, M. S. J. Hashmi, J. Mater. Process. Technol. 170(1-2), 127 (2005);
    CrossRef
  22. X. Cheng, S. Hu, W. Song, X. Xiong, Vacuum 101, 177 (2014);
    CrossRef
  23. B.-Y. Jeong, J.-H. Chang, M.-H. Kim, Surf. Coat. Technol. 205(3), 896 (2010);
    CrossRef
  24. O. Çomaklı, A. F. Yetim, B. Karaca, A. Çelik, Mater. Res. Express. 6 (2019);
    CrossRef
  25. Y. Dong, T. Bell, X. Li, H. Dong, Vacuum 153, 217 (2018);
    CrossRef
  26. Y.-X. Zhou, J. Zhang, Z.-G. Xing, H.-D. Wang, Z.-L. Lv, Surf. Coat. Technol. 361, 270 (2019);
    CrossRef
  27. Z. B. Pang et al., Opt. Laser Technol. 70, 89 (2015);
    CrossRef
  28. Q. Sui et al., J. Mat. Res. 32, 343 (2017); https://doi:10.1557/jmr.2016.474
  29. O. Sukhova, Yu. Syrovatko, Metallofiz. Noveishie Tekhnol. Spec. Iss. 33 371 (2011).
  30. E. I. Kazantsev, Promyshlennye pechi (Metallurgia, Moscow, 1975).
  31. G. Yu. Balandina, B. I. Bertiaev, I. N. Zavetovskaia, V. I. Igoshin, V. A. Katulin, Quant. Electron. 13, 2315 (1986)
  32. G. E. Totten, M. A. Howes, Steel Heat Treatment Handbook (Taylor \& Francis Inc, Bosa Roca, United States, 1997)
  33. V. G. Efremenko et al., Wear 418--419, 24 (2019);
    CrossRef
  34. O. K. von Goldbeck, in {\em Iron-Binary Phase Diagrams} (Springer, Berlin, 1982), p. 35.
  35. T. Zheng et al., Sci. Rep. 9, 266 (2019);
    CrossRef