Journal of Physical Studies 24(2), Article 2701 [6 pages] (2020)
DOI: https://doi.org/10.30970/jps.24.2701

FOURIER IR SPECTROSCOPY STUDY OF THE RADIATION-THERMAL DECOMPOSITION OF WATER IN THE nano-ZrO2+nano-Al2O3+H2O SYSTEM

T. N. Agayev, S. Z. Melikova , N. N. Gadzhieva

Institute of Radiation Problems NAS of Azerbaijan,
9, B. Vahabzadeh St., Baku, AZ--1143, Azerbaijan,
e-mail: sevincmelikova9513@gmail.com

Received 26 August 2019; in final form 27 March 2020; accepted 07 April 2020; published online 18 April 2020

This paper presents the results of Fourier transform infrared spectroscopic studies of the radiation-thermal decomposition of water in the heterogeneous system nano-ZrO$_2$+nano-Al$_2$O$_3$+H$_2$O at various weight ratios of nano-oxides in the temperature range $T=373 \div 673$\,K and during radiation exposure. It has been established that the main intermediate products of radiation-heterogeneous decomposition of water are molecular oxygen and other oxygen-containing radical ion groups generated by gamma irradiation, as well as surface hydrides of zirconium and aluminum. Based on a comparative analysis of changes in the intensity of the absorption bands of molecular water and surface hydroxyl groups characterizing nano-ZrO$_2$ and nano-Al$_2$O$_3$ as a function of temperature, the radiation-catalytic activity of nano-ZrO$_2$ was detected at a fixed value of the absorbed dose. $W_{\rm RT}$ (H$_2$) and its radiation-chemical yields $G$(H$_2$) were determined. A stimulating role in the radiation-thermal decomposition of H$_2$O in a heterogeneous nano-ZrO$_2$+nano-Al$_2$O$_3$ system ($T=373 \div 673$\,K) has been established.

pdf


References
  1. A. N. Kharlamov et al., J. Phys. Chem. 68, 692 (1994).
  2. E. V. Lunina, Catalysis, Fundamental and Applied Research (MGU, Moscow, 1987).
  3. F. D. Chukin, The Structure of Aluminum Oxide and Hydrodesulphurization Catalysts. Reaction Mechanisms (Printing house Paladin, Moscow, 2010).
  4. A. A. Garibov et al., Probl. Atom. Sci. Technol. 5, 48 (2015).
  5. H. Miyata et al., Appl. Spectroscop. 40, 1177 (1986);
    CrossRef
  6. S. Seino et al., Nucl. Sci. Technol. 38, 633 (2001);
    CrossRef
  7. N. G. Petric et al., J. Phys. Chem. B 105, 5935 (2001);
    CrossRef
  8. S. Seino et al., Mater. Res. Soc. Symp. Proc. 608, 505 (2011);
    CrossRef
  9. A. A. Garibov et al., Nanotechnol. Russia 12, 252 (2017);
    CrossRef
  10. T. N. Agayev et al., High Energy Chem. 52, 145(2018);
    CrossRef
  11. A. K. Pikaev, Dosimetry in Radiation Chemistry (Nauka, Moscow, 1975).
  12. I. S. Kuchuk et al., Nanosyst.: Phys. Chem. Math. 3, 123 (2012).
  13. A. A. Garibov et al., High Energy Chem. 48, 281(2014);
    CrossRef
  14. A. A. Davydov, IR Spectroscopy in the Chemistry of Oxide Surfaces (Nauka, Novosibirsk, 1984).
  15. A. N. Kharlamov et al., Vestn. Mosk. Univ. Ser. 2: Khim. 39, 29 (1998).
  16. M. M. Mikhailov et al., J. Surf. Invest. X-ray Synchro\-tron Neutron Techn. 3, 950(2009);
    CrossRef
  17. T. Yoshida et al., Nucl. Sci. Eng. 150, 357(2005);
    CrossRef
  18. R. M. Belekar et al., Int. J. Res. Eng. Technol. 2, 145 (2014).
  19. O. V. Almyasheva et al., Russ. J. Appl. Chem. 82, 217 (2009);
    CrossRef