Journal of Physical Studies 24(2), Article 2901 [6 pages] (2020)
DOI: https://doi.org/10.30970/jps.24.2901

LINE PROFILES AND MAGNETIC FIELDS IN THE LIMB SOLAR FLARE OF JULY 17, 1981. PRELIMINARY RESULTS

V. G. Lozitsky , I. I. Yakovkin , N. I. Lozitska 

Astronomical Observatory of the Taras Shevchenko National University of Kyiv,
e-mail: lozitsky_v@ukr.net, yakovkinii@gmail.com, olozitsky@gmail.com

Received 23 January 2020; in final form 17 March 2020; accepted 09 April 2020; published online 27 April 2020

The limb solar flare of 17 July 1981 is studied according to the observations carried out with the Echelle spectrograph of a horizontal solar telescope of the Astronomical Observatory of Taras Shevchenko National University of Kiev. For 8$^{h}$17$^{m}$ UT, close to the flash phase, the $I \pm V$ profiles of the K Ca II 3933.7 {\AA} and He I 4471.5 {\AA} lines are analyzed. At the indicated moment, these lines had two components of emission, narrow and wide, which were mutually shifted on 1.8-2 {\AA}. The narrow component had a full half-width of 0.24 {\AA} in the K Ca II line and 0.34 {\AA} in the He I line. The wide component had the full half-widths of 3.3 {\AA} and 4.1 {\AA}, respectively, for these lines. The magnetic field magnitude in the flare, measured by splitting the narrow component, varies in the picture plane and reaches 1300 $\pm$ 200 G for the K Ca II line and 2100 $\pm$ 200 G for the He I line. Such features are found at the altitudes of about 10-14 Mm above the level of the photosphere. It is important to note that the true values of the local magnetic fields in the flare could be even larger, since the obtained results represent a longitudinal component of the magnetic field, with the assumption that the filling factor equals unity. On the basis of the comparison of the Doppler widths of the narrow component in the two lines under study, the following estimations of kinetic temperature and turbulent velocity were obtained: $T= 17000 \pm 1000$ K, and $ΞΎ_{\rm turb} = 10.8 \pm 0.3$ km/sec.

pdf


References
  1. V. G. Lozitsky, Bull. Taras Shevchenko Natl. Univ. Kyiv, Astronomy 57, 47 (2018).
  2. A. N. Koval, Bull. Crim. Astrophys. Obs. 57, 106 (1977).
  3. E. A. Kirichek, A. A. Solov'ev, N. I. Lozitskaya, V. G. Lozitskii, Geomagn. Aeronomy 53, 831 (2013);
    CrossRef
  4. V. G. Lozitsky, M. M. Statsenko, in Proceeding of 3$^{rd$ Int. Sci. Seminar "Physics of the Sun and stars"} (Kalmyk University, Elista, 2006), p. 46.
  5. Soln. Dannye No 7, 19 (1981).
  6. V. G. Lozitsky, Adv. Space Res. 57, 398 (2016);
    CrossRef
  7. V. G. Lozitsky, E. A. Baranovsky, N. I. Lozitska, V. P. Tarashchuk, Mon. Not. Roy. Astron. Soc. 477, 2796 (2018);
    CrossRef
  8. C. E. Moore, Contr. Princeton Univ. Observ., No. 20 (Princeton, New Jersey, 1945).
  9. P. N. Polupan, Soln. Dannye No. 4, 106 (1972).
  10. P. N. Polupan, Astron. Zh. 37, 1032 (1960).
  11. M. I. Stodilka, Kinem. Fiz. Nebes. Tel 16, 291 (2000).
  12. P. L. Smith, C. Heise, J. R. Esmond, R. L. Kurucz, Atomic spectral line database from CD-ROM 23 of R. L. Kurucz (Smithsonian Astrophysical Observatory, Cambridge, Mass, 1995); https://www.cfa.harvard.edu/amp/ampdata/kurucz23/sekur.html
  13. V. Lozitsky, V. Masliukh, O. Botygina, Bull. Taras Shevchenko Nat. Univ. Kyiv, Astronomy 52, 7 (2015).
  14. V. G. Lozitsky, O. A. Botygina, Astron. Lett. 38, 380 (2012);
    CrossRef
  15. N. A. Yakovkin, M. Yu Zeldina, Solar Phys. 45, 319 (1975);
    CrossRef
  16. J. W. Brosius, S. M. White, Astrophys. J. 641, L69 (2006);
    CrossRef
  17. V. E. Reznikova et al., Astrophys. J. 697, 735 (2009);
    CrossRef
  18. M. Gordovskyy, V. G. Lozitsky, Solar Phys. 289, 3681 (2014);
    CrossRef
  19. V. G. Lozitsky, Adv. Space Res. 55, 958 (2015);
    CrossRef