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I. INTRODUCTION

The investigations of physics in noncommutative
spaces recently have attracted a lot of attention not
only because noncommutative space is necessary when
considering the low-energy e�ciency of D-brane with a
background B-�eld, but also because in a tiny scale of
strings or under very high energy conditions, e�ects of
noncommutative space may appear. Besides one of the
strongest motivations for noncommutative geometry is
to obtain a coherent mathematical framework in which
it would be possible to describe quantum gravitation.

Our purpose in this manuscript is to present the
importance and the advantages of noncommutative
geometry in both quantum mechanics and quantum �-
eld theory. The idea of the phase-space noncommutati-
vity is strongly motivated in large part by the foundati-
ons of quantum mechanics in the context of canonical
quantization. Furthermore, the origin of noncommutati-
ve geometry referring for the �rst time to the idea
of noncommutative space-time was suggested by Hei-
senberg in 1930 and presented in 1947 by Snyder [1, 2]
in view of the necessity to regularize the divergence of
the quantum �elds theory. This structure could appear
as a natural generalization of the noncommutativity of
phase-space in quantum mechanics. Also its origin was
related to the search for topological spaces (when the
commutative C∗-algebras of functions are replaced by
noncommutative functions algebras). Later A. Connes
and others revived the concept of noncommutative
geometry in 1985 [3�5]. They theorized the idea of a di-
�erential structure in a noncommutative framework by
analyzing and de�ning the cyclic cohomology; in parti-
cular, they pointed out that the concept of di�erenti-
al calculus on manifolds had a noncommutative equi-
valent. Next, the noncommutative geometry got great
support through many mathematical results, such as
Theorem of Gelfand�Na��mark theorem on C∗-algebras,
cyclic cohomology of C∞(M) algebra, K theory of C∗-
algebras, relations between Dirac operators and Ri-
emannian metrics, Serre�Swan theorem, and characteri-
zations of commutative von Neumann algebras.

The noncommutative theory replaces the
noncommutativity of operator associated with space-
time coordinates with deformation in the algebra of
functions de�ned on space-time. On the other hand, a
noncommutative version of a �eld theory is obtained
by replacing the ordinary theory by a noncommutative
theory, in other words, replacing the ordinary �elds by
noncommutative �elds and the ordinary products by
Moyal�Weyl products.
N. Seiberg and E. Witten published their famous

article in 1999 [6], which was the most cited arti-
cle according to Stanford Physics Information Retri-

eval System (SPIRES). This paper stimulated and
encouraged great interest in noncommutative geometry,
and became prevalent during the last years in the study
of many physical problems. Then, it became clear that
there is a close connection between noncommutative
geometry and string theories. Studies of this geometric
type and its implication contributed greatly to highlighti-
ng various �elds of physics, particularly in matrix theory
(also known as the matrix model BFSS (1997)), which
is a tool for studying the properties of the M theory, it
describes the behavior of a set of nine large matrices [7].
The noncommutative geometry is involved also in the
description of quantum gravity theories, known as the
noncommutative quantum �eld theories.
We present existing methods that successfully allow

encoding and applying the noncommutativity of phase-
space in quantum mechanics and quantum �eld theory,
the Weyl quantization, the Moyal�Weyl product, the
Bopp-shift transformations, and the Seiberg�Witten
maps.

II. CANONICAL FORMULATION OF
NONCOMMUTATIVE GEOMETRY

À. The noncommutativity in phase-space

The commutative algebra is an algebra where a
product of two or more algebraic quantities does not
depend on the order of the terms (i.e. AB = BA).
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For ordinary quantum mechanics, in the commutati-
ve phase-space, the coordinates xj and the momenta
pj (the canonical variables) satisfy the usual canonical
commutation relations

[xj , xk] = 0

[pj , pk] = 0 (j, k = 1, . . . , d)

[xj , pk] = i~δjk

. (1)

At string scales (very tiny scales), space no longer
commutes, which allows us to admit the operators
of coordinates and momenta in a d-dimensional
noncommutative phase-space xnc

i and pnc
j , respectively.

The Heisenberg-like commutation relations are as follows

[
xnc
j , x

nc
k

]
= iΘjk[

pnc
j , p

nc
k

]
= iηjk (j, k = 1, . . . , d)[

xnc
j , p

nc
k

]
= i~effδjk

, (2)

the e�ective Planck constant as shown in subsection VIÀ
can be written as follows

~eff = ~ (1 + ξ) , (3)

where

ξ =
Tr [Θη]

(2~)
2 , (4)

and ξ � 1 is the condition of consistency in
quantummechanics. Θjk, ηjk are constant antisymmetric
d × d matrices and δjk is the identity matrix. Theoreti-
cal predictions for noncommutative systems concerni-
ng noncommutative parameters as in the experience of
Nesvizhevsky et al. [8, 9] showed that Θ ≈ 10−30 m2

and η ≈ 1.76 · 10−61 kg2 m2 s−2. Other bounds exist. For
instance Θ ≈ 4 · 10−40 m2 when assuming ~ = c = 1
(the natural units) [10], and when taking into account
that the experimental energy resolution is related to the
uncertainty principle because of the �nite lifetime of the
neutron, this leads to obtaining η ≈ 10−67 kg2 m2 s−2.
These obtained results with that of the Nesvizhevsky

et al. experiment allow us to estimate the consistency
condition of the noncommutative model |ξ| ≤ 10−24.
But if we consider the modi�cations introduced by the
noncommutativity on the value of ~ which are at least
about 24 orders of magnitude smaller than its value (wi-
th the precision of about 10−9), and considering the
corrected bound of η, we have |ξ| ≤ 10−29 [11]. These
values agree with the higher bounds on the basic scales
of coordinate and momentum. These bounds will be
suppressed if the used magnetic �eld in the experiment
is weak B ≈ 5 mG.
In a 4-dimensional noncommutative space-time, we

have the anti-commutation relations [12, 13]

[xµnc, x
ν
nc] = iΘµν (µ, ν = 0, . . . , 3). (5)

In the context of the �eld theory, it is more practical
to introduce the noncommutative scale Λnc by

Θµν =
cµν

Λnc
, (6)

where cµν is a dimensionless antisymmetric tensor,
where the components are O(1). And Λnc represents
a characteristic energy scale for the noncommutative
theory which is necessarily quite large.
For the noncommutative 3-dimensional systems, we

have the following noncommutative algebra [14]

[
xnc
j , x

nc
k

]
= iεjklΘl[

pnc
j , p

nc
k

]
= iεjklηl (j, k, l = 1, 2, 3)[

xnc
j , p

nc
k

]
= i~effδjk

, (7)

Θjk, ηjk must be antisymmetric matrices of (3 × 3),
and εijk is the Levi-Civita symbol, and the summati-
on convention is used. We have ε123 = ε231 = ε312 =
−ε321 = −ε132 = −ε213 = 1, if j = k or k = l,
εjkl = 0. And Θl, ηl are the real-valued noncommutative
parameters with the dimension of length2, momentum2

respectively. We neglect the relation of uncertainty
between noncommutative canonical variables.
For the noncommutative 2-dimensional systems, we

have the following noncommutative algebra

[
xnc
j , x

nc
k

]
= iΘεjk[

pnc
j , p

nc
k

]
= iηεjk (j, k = 1, 2)[

xnc
j , p

nc
k

]
= i~effδjk

, (8)

we have ε12 = −ε21 = 1, ε11 = ε22 = 0, and Θ, η
have real values and correspond to the components Θ12

and Θ21 of the noncommutative parameters in Eq. (2).
Note that the relation (2) (according to the inequality of
Cauchy�Schwarz) gives rise to the following phase-space
uncertainty relation [13]

(∆x)j(∆x)k ≥ 1

2
| Θij |, (∆p)j(∆p)k ≥ 1

2
| ηjk | . (9)

Á. THE TIME-DEPENDENT
NONCOMMUTATIVITY

Several scienti�c works have focused on the time-
independent noncommutativity. The studies have
considered experimentally the parameters of the
noncommutativity of �xed values in the radiation
frame of the cosmic microwave background, maybe
considered approximately �xed to the celestial sphere,
for instance, as proposed in the reference [15]. However,
in this section, our obvious intention is to involve
the time-dependency in noncommutative parameters.
For instance, physical measurements must take into
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account the e�ect of the rotation of the Earth around
its axis, which will introduce a time-dependency into
the noncommutative parameters. Thus, we consider
here a time-dependent noncommutative algebra, which
satis�es the following commutation relations [16]

[
xnc
j , x

nc
k

]
= iΘjk (t)[

pnc
j , p

nc
k

]
= iηjk(t) (j, k = 1, . . . , d)[

xnc
j , p

nc
k

]
= i~effδjk

, (10)

with

Θjk (t) = Θjke
γt and ηjk(t) = ηjke

−γt. (11)

The position of the system cannot be localized in
space, except for less in�nite times. The space coordi-
nates (the same for the momenta) become fuzzy and
�uid [17]. The parameter Θ represents the fuzziness
and the parameter γ represents the �uidity of the
space. The above relations are the known relations of
the ordinary noncommutative geometry except that the
parameters Θ(t), η(t) are considered exponential functi-

ons. Of course, a multitude of other possibilities exists
such as

Θ(t) = Θ cos(γt), η(t) = η sin(γt). (12)

III. THE WEYL QUANTIZATION (WEYL
OPERATOR)

In 1927, Hermann K. H. Weyl introduced the quanti-
zation of Weyl, which is a technique used to describe
quantum mechanics from the phase-space of classical
mechanics. This elegant description allows us to associate
a quantum observable with a real classical function that
depends on the canonical variables on the phase space
[18]. This technique provides a systematic way to descri-
be non-commutative spaces in general and to study the
theories of the �elds de�ned on them. The condition of
Schwartz [19, 20] equally implies that any function f (x)
de�ned on a Euclidean vector space RD with D dimensi-
ons can be described by its Fourier transform f̃ (k), by
the relation

f̃ (k) =

∫
dDxe−ikix

i

f (x) , with f̃∗ (k) = f̃ (−k) if the function f (x) is real. (13)

We de�ne a noncommutative space-time by replacing
the local coordinates xi of RD by Hermitian operators
x̂i, which verify the commutation relation (2). Then x̂i
generates a noncommutative algebra of operators.
Weyl's quantization consists in making a one-to-one

correspondence between the algebra of functions f (x)
de�ned on RD and the algebra of operators. Weyl's
symbol is de�ned by [21]

Ŵ [f ] =

∫
dDk

(2π)
D
f̃ (k) eikix̂

i

, (14)

which is the operator �eld that corresponds to f (x).
Weyl's operator is Hermitian, if f (x) is a real function

Ŵ † [f ] = Ŵ [f ] . (15)

IV. THE GROENEWOLD�MOYAL PRODUCT
(?−PRODUCT)

À. De�nition and formula

The Moyal product (according to Jos�e E. Moyal) is
also called the star product (noted ?) or the Groenewold�
Weyl product (according to Hermann Weyl and Hilbrand

J. Groenewold). It is an associative deformation of the
law of the product; it was �rst introduced during the
development of the possible statistical signi�cation of
quantum mechanics and the relation between physical
quantities and quantum mechanics operators.
The product of two Weyl operators of two functions

provides the operator of Weyl associated with the star
product of the two functions, i.e. using Eqs. (13�14)
and according to the Baker�Campbell�Hausdor� (BCH)
formula [22, 23], we deduce that

Ŵ [f ] Ŵ [g] = Ŵ [f ? g] , (16)

where the Baker�Campbell�Hausdor� formula (the �rst
few terms) is

eAeB = exp

[
A+B +

1

2
[A,B]

+
1

12
([A, [A,B]] + [[A,B] , B]) + . . .

]
. (17)

The noncommutative geometry is in turn described
at the level of functions, actions and �elds by the
Gronewold�Moyal product. If the two functions vary in
terms of x and p, f(x, p) and g(x, p) are assumed to be
in�nitely di�erentiable, the Moyal product can be used
as follows [24, 25]
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(f ? g)(x, p) = exp

[
i

2
Θab∂xa∂xb +

i

2
ηab∂pa∂pb

]
f (xa, pa) g (xb, pb) = f(x, p)g(x, p)

+
∑
n=1

(
1

n!

)(
i

2

)n
Θa1b1 . . .Θanbn∂xa1 . . . ∂

x
ak
f(x, p)∂xb1 . . . ∂

x
bk
g(x, p) (18)

+
∑
n=1

(
1

n!

)(
i

2

)n
ηa1b1 . . . ηanbn∂pa1 . . . ∂

p
ak
f(x, p)∂pb1 . . . ∂

p
bk
g(x, p).

When the two functions vary in terms of x only, then Eq. (18) is reduced to [26, 27]

(f ? g)(x) = exp

[
i

2
Θab∂xa∂xb

]
f (xa) g (xb) = f(x)g(x)

+
∑
n=1

(
1

n!

)(
i

2

)n
Θa1b1 . . .Θanbn∂a1 . . . ∂akf(x)∂b1 . . . ∂bkg(x). (19)

The noncommutative �eld theories for slow-variation or low-energy �elds (ΘE2 . 1) at the classical level are
completely reduced to their commutative versions, because of the nature of the star product. But this is just the
classical result and quantum corrections will reveal the in�uences of Θ even at low energies [28].

Á. Some properties and rules

Below we summarize some useful properties and identities [29] of the star product algebra. Let f , g and h be three
arbitrary functions from RD

1. The star product is noncommutative

f (x, p) ? g (x, p) 6= g (x, p) ? f (x, p) , on the other hand f (x) ? g (x) = g (x) ? f (x)
∣∣∣
Θ→−Θ

, (20)

2. For Θ = η = 0, we �nd the commutative case

f (x, p) ? g (x, p)
∣∣∣
Θ=η=0

= f (x, p) g (x, p) . (21)

3. The complex conjugation

(f (x) ? g (x))
∗

= g∗ (x) ? f∗ (x) . (22)

4. The star product between exponentials

eikx ? eiqx = ei(k+q)xe−
i
2 (k∧q), with k ∧ q ≡ kµqνθµν . (23)

5. Representation of momentum space

f (x) =

∫
f̃ (k) eikxdDk, g (x) =

∫
g̃ (k) eikxdDk, and (x) =

∫
h̃ (k) eikxdDk, (24)

where f̃ (k), g̃ (k) and h̃ (k) are the Fourier transforms of the functions f , g and h respectively. Using Eq. (23)
we �nd

f (x) ? g (x) =

∫
f̃ (k) g̃ (q) e−i

kθq
2 ei(k+q)xdDkdDq. (25)
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6. The associativity: Using the property (25) we �nd

((f ? g) ? h) (x) =

∫
f̃ (k) g̃ (q) h̃ (p) e−i

kθq
2 e−i

(k+q)θp
2 ei(k+q+p)x dDkdDqdDp, (26)

(f ? (g ? h)) (x) =

∫
f̃ (k) g̃ (q) h̃ (p) e−i

qθp
2 e−i

(q+p)θk
2 ei(k+q+p)x dDkdDqdDp, (27)

the star product is associative

(f (x) ? g (x)) ? h(x) = f (x) ? (g (x) ? h(x)) = f (x) ? g (x) ? h(x). (28)

7. The star product under the integral sign∫
(f ? g) (x) dDx =

∫
(g ? f) (x) dDx =

∫
(fg) (x) dDx, (29)

we learn that the kinetic part of the actions (which are quadratic in the �elds) is the same as its commutative
version. Thus, free-�eld propagators in commutative and noncommutative spaces are the same. This property
follows for Schwartz functions on RD via the integration by parts.

8. The integration over the space coordinates x has the cyclic property and all the properties of the Tr in the
matrix calculation∫

(f ? g ? h) (x) dDx =

∫
(h ? f ? g) (x) dDx =

∫
(g ? h ? f) (x) dDx. (30)

9. Leibniz's rule

∂µ (f ? g) = (∂µf) ? g + f ? (∂µg) . (31)

10. The Moyal commutator in terms of the �rst-order deformation quantization of Θ

[f, g]? = f ? g − g ? f = [f, g] + iΘij∂if∂gj + 0
(
∂3f, ∂3g

)
, (32)

for an Abelian group ([f, g] = 0), the above equation becomes

[f, g]? = iΘij∂if∂gj + 0
(
∂3f, ∂3g

)
. (33)

An Abelian group (according to Niels Abel), also called a commutative group, is a group in which its internal
composition law is commutative.

V. THE SEIBERG�WITTEN (SW) MAPS

The idea of the Seiberg�Witten maps has attracted
a lot of attention and has been studied in depth in
recent years, mainly on the basis that the theory of
noncommutative gauges appears as a certain limit of the
string theory. The relation to the string theory gives an
interesting result: Noncommutative gauge theories can
be mapped to commutative theories [6].

When you have a non-Abelian theory, such as the
Yang�Mills theory(this type of theory was introduced in
1950 by C. N. Yang and R. Mills), the gauge structure
will be encoded in commutators and anti-commutators.
On the other hand, for an Abelian theory, all the
commutators disappear. On the noncommutative side,
the usual multiplication of functions is replaced by the

star product (19), and we can write the star commutator
to the �rst order by Eq. (32). The noncommutative
Yang�Mills action is as follows [30]

S = −1

4
Tr

∫
F̂µν ? F̂µν d

4k

= −1

4
Tr

∫
F̂µν F̂µν d

4k, (34)

where the strength tensor of the non-commutative gauge
�eld Âµ is

F̂µν = ∂µÂν − Âµ∂ν − i
[
Âµ, Âν

]
?
. (35)

Equation (34) is invariant under the following
noncommutative gauge transformations
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δ̂Λ̂Âµ = ∂µΛ̂+ i
[
Λ̂, Âµ

]
?
≡ D̂µΛ̂,

with

δ̂Λ̂F̂µν = i
[
Λ̂, F̂µν

]
?
. (36)

Here Λ̂ is the gauge parameter in the noncommutati-
ve case. Take into consideration that for a commutative
gauge theory, the potential four-vector of the gauge is Aµ
(where the gauge parameter is Λ), with the gauge �eld
strength tensor

Fµν = ∂µAν −Aµ∂ν − i [Aµ, Aν ] , (37)

we must di�erentiate the operators Â, Λ̂, δ̂, . . . (with
circum�ex) and those without circum�ex A,Λ, δ, . . . .
Knowing that the transformations of the commutative
gauge are

δΛAµ = ∂µΛ+ i [Λ,Aµ] ≡ DµΛ,

with

δΛFµν = i [Λ,Fµν ] . (38)

The Seiberg�Witten maps make a connection (an
equivalence relation) between a commutative and a

noncommutative gauge theory. Such a relation between
the noncommutative gauge theory and its ordinary
(homologous) counterpart can also be demonstrated
using only the algebraic structure of the aforementi-
oned noncommutative space (canonically deformed) and
the ?−product without reference to the string theory
[21, 30, 31]. So it is possible to de�ne an SW map that
links as an equivalence relation of gauge by

Âµ (A; Θ) + δ̂Λ̂Âµ (A; Θ) = Âµ (A+ δΛA; Θ) . (39)

Note that the noncommutative gauge �eld Âµ and the

noncommutative gauge parameter Λ̂ have the following
functional dependency (i. e. one can consider them as
functional ordinary �elds Aµ, Fµν)

Âµ = Âµ (A; Θ) , F̂µν = F̂µν (A; Θ) ,

and

Λ̂ = Λ̂(Λ̂, A; Θ). (40)

The transformation comes down to the following di-
agram (according to [32])

Aµ Aµ + δAµ

Âµ Âµ + δÂµ

δ

δ

⇔ ̂Aµ + δAµ = Âµ + δÂµ ⇔ δÂµ = δ̂Âµ,

where it is equivalent to transforming function Aµ by
δ and to transforming the noncommutative connection

Âµ by δ̂. This is what we will call the Seiberg�Witten
equation

δΛÂµ − ∂µΛ̂ = i
[
Λ̂, Âµ

]
?
. (41)

To solve Eq. (39), we use the condition of consi-
stency(coherence) of noncommutative gauge [30]

iδ̂αΛ̂β − iδ̂βΛ̂α −
[
Λ̂α, Âβ

]
?

= iΛ̂−i[α,β], (42)

and its ordinary counterpart given by

δαδβ − δβδα = δ−i[α,β] = δα×β , (43)

where α, β are Hermitian matrices. Take into account
that for the components of order n of Λ̂α and Λ̂β ,

it is then possible to write a coherence equation of
noncommutative gauge

iδ̂αΛ̂
n
β − iδ̂βΛ̂nα −

∑
p+q+r=n

[
Λ̂pα, Â

q
β

]
?r

= iΛ̂n−i[α,β], (44)

and ?r denotes

(f ?r g)(x) =
1

r!

(
i

2

)r
(45)

×Θa1b1 . . .Θarbr∂a1 . . . ∂arf(x)∂b1 . . . ∂brg(x).

Consequently,

α× β = −i [α, β] = αaβbf
ab
c T

c,

with (46)

fabc T
c = −i

[
T a, T b

]
,

where T a are representations of a group SU(N),
consequently, a non-Abelian gauge theory is based on
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this Lie algebra. More precisely, we write α, β from
Ax, which form a representation of the T-algebra (the
generators T of the Lie algebra). Knowing that Ax ≡
C
[[
x̂1, . . . , x̂N

]]
/R, in which the non-commutative

space can be de�ned as the associative algebra over C,
which consists of the algebra freely generated by the
coordinates and then divided by the ideal R. For the
components of order n of Λα and Λν , it is also possible
to write a gauge consistency equation

δαΛ
n
ν = ∂νΛ

n
α −

∑
p+q+r=n

[Λpν , Λ
q
α]?r . (47)

To �nd SW maps of the noncommutative gauge
parameter Λ̂ and the �eld of the noncommutative
gauge Âµ, we can solve the condition of consistency
(42) and the equivalence gauge (39). For this purpose,
noncommutative variables can be extended as a series of
formal powers in Θ

Âµ = Aµ +A
(1)
µ +A

(2)
µ . . . ,

F̂µν = Fµν + F
(1)
µν + F

(2)
µν + . . . ,

Λ̂ = Λ+ Λ(1) + Λ(2) + . . . ,

(48)

the terms of zero-order are ordinary counterparts.
Moreover, allowing the theory to be a valued envelopi-
ng algebra, we can construct the noncommutative gauge
theory for an arbitrary gauge group such as SU(N).
Furthermore, we will not specify the gauge group and
the results will be valid for a group of an arbitrary non-
Abelian gauge.
Thus, we have the �rst-order solution given in the ori-

ginal document [3]

Λ(1)
α = −1

4
Θkλ {Ak, ∂λα} ,

Λ(1)
γ = −1

4
Θkλ {Ak, ∂λAγ + Fλk} , (49)

where ∂λα = δαAλ − i [α,Aλ]. We can also �nd the
strength tensor of the �rst-order �eld (35)

F (1)
γρ = − 1

4
Θkλ

({
Ak, ∂λFγρ +DλFγρ

}
− 2

{
Fγk, Fρλ

})
, (50)

where the products on the right hand side in the above
equations, such as {Ak, ∂λα} = Ak.∂λα + ∂λα.Ak are
ordinary matrix products.
It should be emphasized here once again that

these solutions are not unique because one can add
homogeneous solutions to (49) with arbitrary coe�ci-
ents. However, the structure of these solutions will be
useful to obtain recursive solutions to all orders.
Indeed, the explicit solutions for SW maps of the

non-Abelian gauge theory have been found by various
authors until the second-order of Θ [30, 33, 34]. Because
of the liberty in the solutions (49), these maps are

di�erent from each other by a homogeneous solution
with di�erent coe�cients. Finally, explicit Seiberg�
Witten maps of noncommutative �elds obviously are
necessary to understand physical predictions and to veri-
fy the behavior of the noncommutative theory itself, such
as the renormalizability.

VI. THE BOPP-SHIFT LINEAR TRANSLATION

À. The Bopp-shift translation

In the noncommutative phase-space, coordinates xnc
i

and momenta pnc
i satisfy the commutation relations (2),

and using equations (1-2), we can represent variables xnc
i

and pnc
i in terms of xiand pi by [35, 36]

xnc
i = aijxj + bijpj and pnc

i = cijxj + dijpj

with (51)

i, j = 1, . . . , n.

The system of equations (51) can also be rewritten as
follows (

xnc

pnc

)
=

(
A B
C D

)(
x

p

)
, (52)

where A = (aij) , B = (bij) ,and C = (cij) , D = (dij)

aresquare matrices of n× n dimension.
We calculate the exact form of the above matrices.

For this, we use equations (1-2 and 51), we obtain the
following system of equation

ABT −BAT =
Θ

~

CDT −DCT =
η

~
(53)

ADT −BCT =
~eff

~
In×n.

Matrices A and D can be chosen proportionally to the
identity operator, which we respectively designate by α
and β, which means aij = αδij and dij = βδij where
α and β are two scaling constants. Thus, the system
becomes

α
(
BT −B

)
= Θ

β
(
C − CT

)
= η

BCT = (αβ − 1) In×n

, (54)

according to the �rst two equations in Eq. (54), we can
see that, if B, C are antisymmetric, they will have expli-
cit solutions. The third equation in Eq. (54) is satis�ed
only when B, C are symmetric or antisymmetric. The
symmetrical case of B, C leads to Θ = η = 0 (which
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means that our space is commutative). So we choose B,
C antisymmetric, and we �nd

B = − 1

2α~
Θ, C =

1

2β~
η. (55)

By substituting the expressions of A, B, C and D in
the third equation of Eq. (53), we get the generalized
expression of the e�ective Planck constant

~eff = αβ~ +
Tr[Θη]

4~αβ
. (56)

We insert Eq. (55) in Eq. (52) and obtain

(
xnc

pnc

)
=

(
αIn×n − 1

2α~Θ

1
2β~η βIn×n

)(
x

p

)
, (57)

so Eq. (51) becomes [37]

xnc
i = αxi −

1

2α~
Θijpj , pnc

i = βpi +
1

2β~
ηijxj , with i, j = 1, 2 . . . , n. (58)

The above equations (58) are the generalized Bopp-shift transformation, with α = 1 − Θη
8~2 and β = 1

α . Generally
in the calculations, we take α = β = 1, so Eqs. (58, 56) become

xnc
i = xi −

1

2~
Θijpj , pnc

i = pi +
1

2~
ηijxj and ~eff = ~ +

Θη

4~
, with i, j = 1, 2, . . . , n. (59)

When we consider a 2-dimensional non-commutative phase-space (i, j = 1, 2), we have

For i = 1, xnc
1 = xnc = x− 1

2~
Θpy, pnc

1 = pnc
x = px +

1

2~
ηy. (60)

For i = 2, xnc
2 = ync = y +

1

2~
Θpx, pnc

2 = pnc
y = py −

1

2~
ηx, (61)

so �nally, we �nd the following Darboux transformation

xnc = x− 1

2~
Θpy, pnc

x = px +
1

2~
ηy

(62)

ync = y +
1

2~
Θpx, pnc

y = py −
1

2~
ηx.

We can say that the operators of noncommutativity in
phase-space are linked to the commutative operators by
the Heisenberg�Weyl algebra in terms of the Bopp-shift
linear translation introduced from Eq. (62).

Á. Time-dependent Bopp-shift translation

The new deformed geometry of time-dependent non-
commutativity in phase-space is linked to commu-
tative geometry by the Heisenberg�Weyl algebra via the
time-dependent linear Bopp-shift linear transformation
introduced from the equation

xnc
i (t) = xi −

1

2~
Θij(t)pj , pnc

i = pi +
1

2~
ηij(t)xj ,

with

i, j = 1, 2 . . . n. (63)

For a 2-dimensional noncommutative phase-space and
according to Eq. (11), it becomes [38]

xnc(t) = x− 1

2~
Θeγtpy, pnc

x (t) = px +
1

2~
ηe−γty

(64)

ync(t) = y +
1

2~
Θeγtpx, pnc

y (t) = py −
1

2~
ηe−γtx.

For γ = 0, the time-dependency in the structure
of the noncommutative parameter is canceled. When
Θ = η = 0, the systems of noncommutative phase-
space (62) and time-dependent noncommutative phase-
space(64) will become commutative systems. We would
like to note that if we have a problem of a charged parti-
cle in an electromagnetic �eld it would be quite well
to approach it via the Seiberg�Witten maps. On the
other hand, if we have a magnetic �eld interaction (or
a problem of a quantum neutral particle moving under
the action of a Newtonian gravitational potential for
instance), we will follow a quite standard approach, that
has been widely used in the literature on noncommutati-
ve quantum mechanics, which depends on obtaining a
noncommutative version of a given �eld theory through
the Moyal�Weyl product.
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VII. CONCLUSION

In conclusion, the techniques described in this
paper have proved to be invaluable methods for the
study of noncommutative quantum mechanics and
noncommutative �eld theory. As remarked in this
paper, the noncommutativity is ordinarily formulated
and coded mainly in terms of four methods, which
are: (i) the ordinary product with Weyl operators, (ii)
by replacing the ordinary product with the product
of Moyal�Weyl in the functions and actions of the
systems, (iii) using Bopp-shift linear transformations,

(iv) through the maps of Seiberg�Witten. It is also
worth clarifying that the noncommutativity could be
time-dependent; we explained the reasons behind this,
besides we extracted a time-dependent noncommutative
algebra through noncommutative parameters considered
exponential functions. Of course, we con�rm that there
are other options for noncommutative parameters forms.
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Ilyas HAOUAM

ÏÐÎ ÍÅÊÎÌÓÒÀÒÈÂÍÓ ÃÅÎÌÅÒÐIÞ Ó ÊÂÀÍÒÎÂIÉ ÌÅÕÀÍIÖI

Iëüÿñ Ãàâàì

Óíiâåðñèòåò iìåíi áðàòiâ Ìåíòóði, Êîíñòàíòèíà, Àëæèð

Ó ñòàòòi íàâåäåíî îãëÿä ôîðìàëiçìó, ÿêèé âiäiãðà¹ öåíòðàëüíó ðîëü ó áiëüøîñòi äîñëiäæåíü, ùî ñòî-
ñóþòüñÿ íåêîìóòàòèâíî¨ ãåîìåòði¨. Îïèñàíî íàÿâíi ìåòîäè, ÿêi óñïiøíî äîçâîëÿþòü âèêîðèñòîâóâàòè òà
çàñòîñîâóâàòè íåêîìóòàòèâíiñòü ôàçîâîãî ïðîñòîðó ÿê ó êâàíòîâié ìåõàíiöi, òàê é ó êâàíòîâié òåîði¨ ïî-
ëÿ. Çîêðåìà, êîðîòêî ïîÿñíåíî êâàíòóâàííÿ Âåéëÿ, äîáóòîê Ìîÿëà�Âåéëÿ, ïåðåòâîðåííÿ çñóâó Áîïïà òà
âiäîáðàæåííÿ Çàéáåð à�Âiòòåíà.

Êëþ÷îâi ñëîâà: íåêîìóòàòèâíà ãåîìåòðiÿ, íåêîìóòàòèâíà êâàíòîâà ìåõàíiêà, êâàíòóâàííÿ Âåéëÿ, äî-
áóòîê Ìîÿëà�Âåéëÿ, ïåðåòâîðåííÿ çñóâó Áîïïà, âiäîáðàæåííÿ Çàéáåð à�Âiòòåíà, âiäîáðàæåííÿ Âåéëÿ�
Âi íåðà, ñïiââiäíîøåííÿ íåâèçíà÷åíîñòåé.
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