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In this paper, we presented and reviewed a formalism that plays a central role in most of the investi-
gations concerning noncommutative geometry. We presented existing methods that successfully
allow us to utilize and apply the noncommutativity of phase-space in both quantum mechanics and
quantum field theory. In particular, we briefly explained the Weyl quantization, the Moyal-Weyl
product, the Bopp-shift transformations, and the Seiberg—Witten maps.
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I. INTRODUCTION

The investigations of physics in noncommutative
spaces recently have attracted a lot of attention not
only because noncommutative space is necessary when
considering the low-energy efficiency of D-brane with a
background B-field, but also because in a tiny scale of
strings or under very high energy conditions, effects of
noncommutative space may appear. Besides one of the
strongest motivations for noncommutative geometry is
to obtain a coherent mathematical framework in which
it would be possible to describe quantum gravitation.

Our purpose in this manuscript is to present the
importance and the advantages of noncommutative
geometry in both quantum mechanics and quantum fi-
eld theory. The idea of the phase-space noncommutati-
vity is strongly motivated in large part by the foundati-
ons of quantum mechanics in the context of canonical
quantization. Furthermore, the origin of noncommutati-
ve geometry referring for the first time to the idea
of noncommutative space-time was suggested by Hei-
senberg in 1930 and presented in 1947 by Snyder [1, 2]
in view of the necessity to regularize the divergence of
the quantum fields theory. This structure could appear
as a natural generalization of the noncommutativity of
phase-space in quantum mechanics. Also its origin was
related to the search for topological spaces (when the
commutative C*-algebras of functions are replaced by
noncommutative functions algebras). Later A. Connes
and others revived the concept of noncommutative
geometry in 1985 [3-5]. They theorized the idea of a di-
flerential structure in a noncommutative framework by
analyzing and defining the cyclic cohomology; in parti-
cular, they pointed out that the concept of differenti-
al calculus on manifolds had a noncommutative equi-
valent. Next, the noncommutative geometry got great
support through many mathematical results, such as
Theorem of Gelfand—Naimark theorem on C*-algebras,
cyclic cohomology of C*°(M) algebra, K theory of C*-
algebras, relations between Dirac operators and Ri-
emannian metrics, Serre-Swan theorem, and characteri-
zations of commutative von Neumann algebras.

This work may be used under the terms of the Creative Commons Attribution 4.0 International License. Further distri-
v bution of this work must maintain attribution to the author(s) and the title of the paper, journal citation, and DOI.

The  noncommutative  theory  replaces  the
noncommutativity of operator associated with space-
time coordinates with deformation in the algebra of
functions defined on space-time. On the other hand, a
noncommutative version of a field theory is obtained
by replacing the ordinary theory by a noncommutative
theory, in other words, replacing the ordinary fields by
noncommutative fields and the ordinary products by
Moyal-Weyl products.

N. Seiberg and E. Witten published their famous
article in 1999 [6], which was the most cited arti-
cle according to Stanford Physics Information Retri-
eval System (SPIRES). This paper stimulated and
encouraged great interest in noncommutative geometry,
and became prevalent during the last years in the study
of many physical problems. Then, it became clear that
there is a close connection between noncommutative
geometry and string theories. Studies of this geometric
type and its implication contributed greatly to highlighti-
ng various fields of physics, particularly in matrix theory
(also known as the matriz model BFSS (1997)), which
is a tool for studying the properties of the M theory, it
describes the behavior of a set of nine large matrices [7].
The noncommutative geometry is involved also in the
description of quantum gravity theories, known as the
noncommutative quantum field theories.

We present existing methods that successfully allow
encoding and applying the noncommutativity of phase-
space in quantum mechanics and quantum field theory,
the Weyl quantization, the Moyal-Weyl product, the
Bopp-shift transformations, and the Seiberg—Witten
maps.

II. CANONICAL FORMULATION OF
NONCOMMUTATIVE GEOMETRY

A. The noncommutativity in phase-space

The commutative algebra is an algebra where a
product of two or more algebraic quantities does not
depend on the order of the terms (i.e. AB = BA).
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For ordinary quantum mechanics, in the commutati-
ve phase-space, the coordinates z; and the momenta
p; (the canonical variables) satisfy the usual canonical
commutation relations

[zj,z5] = O
[pjapk] = 0
[xj,pk] = ihdjk

(J,k=1,...,d). (1)

At string scales (very tiny scales), space no longer
commutes, which allows us to admit the operators
of coordinates and momenta in a d-dimensional
noncommutative phase-space zj¢ and p7°, respectively.
The Heisenberg-like commutation relations are as follows

[m?c, ] = Oy
[pévarléc] = ank (]7k: ]-77d) 5 (2)
[x?c,pzc] = ihf§

the effective Planck constant as shown in subsection VI A
can be written as follows

T =n(1+¢), (3)
where
_ Tr[©n]
§= @n? (4)

and ¢ < 1 is the condition of consistency in
quantum mechanics. O i, n;; are constant antisymmetric
d x d matrices and J;;, is the identity matrix. Theoreti-
cal predictions for noncommutative systems concerni-
ng noncommutative parameters as in the experience of
Nesvizhevsky et al. [8, 9] showed that © ~ 1073°m?
and 7 ~ 1.76 - 107! kg? m? s~2. Other bounds exist. For
instance © ~ 4 - 107*°m? when assuming h = ¢ = 1
(the natural units) [10], and when taking into account
that the experimental energy resolution is related to the
uncertainty principle because of the finite lifetime of the
neutron, this leads to obtaining 1 ~ 107" kg? m? s 2.

These obtained results with that of the Nesvizhevsky
et al. experiment allow us to estimate the consistency
condition of the noncommutative model [£] < 10724
But if we consider the modifications introduced by the
noncommutativity on the value of i which are at least
about 24 orders of magnitude smaller than its value (wi-
th the precision of about 107?), and considering the
corrected bound of 7, we have |¢| < 1072 [11]. These
values agree with the higher bounds on the basic scales
of coordinate and momentum. These bounds will be
suppressed if the used magnetic field in the experiment
is weak B ~ 5 mG.

In a 4-dimensional noncommutative space-time, we
have the anti-commutation relations [12, 13]

[The, wicl = 10" (v =0,...,3). (5)
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In the context of the field theory, it is more practical
to introduce the noncommutative scale A,. by

c*v

py _
o=

(6)

where c¢*” is a dimensionless antisymmetric tensor,
where the components are O(1). And A,. represents
a characteristic energy scale for the noncommutative
theory which is necessarily quite large.

For the noncommutative 3-dimensional systems, we
have the following noncommutative algebra [14]

[0, 23] = €0
[p;’lc’prl;c} = Z.ejklnl (]akvl = 1a273) ) (7)
25, pk] = ihToj

Ok, njrx must be antisymmetric matrices of (3 x 3),
and ¢ is the Levi-Civita symbol, and the summati-
on convention is used. We have €123 = €231 = €310 =
—€321 = —€132 = —€g3 = 1, if j = Kk or k = [,
ikt = 0. And ©y, 1; are the real-valued noncommutative
parameters with the dimension of length?, momentum?
respectively. We neglect the relation of uncertainty
between noncommutative canonical variables.

For the noncommutative 2-dimensional systems, we
have the following noncommutative algebra

] = 00
(3,0 = inejn (J,k=1,2), (8)
[25°,p0] = ihTa

we have €10 = —e1 = 1, €11 = €2 = 0, and O, 7

have real values and correspond to the components ©15
and O2; of the noncommutative parameters in Eq. (2).
Note that the relation (2) (according to the inequality of
Cauchy—Schwarz) gives rise to the following phase-space
uncertainty relation [13]

(Az)/ (Az)" > — |07 |, (Ap)/(Ap)* > = [9/* |. (9)

N
N

B. THE TIME-DEPENDENT
NONCOMMUTATIVITY

Several scientific works have focused on the time-
independent noncommutativity. The studies have
considered experimentally the parameters of the
noncommutativity of fixed values in the radiation
frame of the cosmic microwave background, maybe
considered approximately fixed to the celestial sphere,
for instance, as proposed in the reference [15]. However,
in this section, our obvious intention is to involve
the time-dependency in noncommutative parameters.
For instance, physical measurements must take into
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account the effect of the rotation of the Earth around
its axis, which will introduce a time-dependency into
the noncommutative parameters. Thus, we consider
here a time-dependent noncommutative algebra, which
satisfies the following commutation relations [16]

[ 23] = 1Ok (¢)

2o, phe] = iy (t) (G k=1....d), (10)

[a:?c,p’k‘c] = ih°f;

with

Q)i (t) = Oke”" and i (t) =mre . (11)

The position of the system cannot be localized in
space, except for less infinite times. The space coordi-
nates (the same for the momenta) become fuzzy and
fluid [17]. The parameter O represents the fuzziness
and the parameter 7 represents the fluidity of the
space. The above relations are the known relations of
the ordinary noncommutative geometry except that the
parameters ©(t), n(t) are considered exponential functi-

J

We define a noncommutative space-time by replacing
the local coordinates x; of R” by Hermitian operators
Z;, which verify the commutation relation (2). Then &;
generates a noncommutative algebra of operators.

Weyl’s quantization consists in making a one-to-one
correspondence between the algebra of functions f(x)
defined on RP and the algebra of operators. Weyl’s
symbol is defined by [21]

szjkiﬁfméMi (14)

which is the operator field that corresponds to f (x).
Weyl’s operator is Hermitian, if f (z) is a real function

W] =WI[f]. (15)

IV. THE GROENEWOLD-MOYAL PRODUCT
(*~PRODUCT)

A. Definition and formula

The Moyal product (according to José E. Moyal) is
also called the star product (noted *) or the Groenewold—
Weyl product (according to Hermann Weyl and Hilbrand

f(k)= / dPxe~*i f(z), with f* (k)

ons. Of course, a multitude of other possibilities exists
such as

O(t) = O cos(yt), n(t) = nsin(yt). (12)

III. THE WEYL QUANTIZATION (WEYL
OPERATOR)

In 1927, Hermann K. H. Weyl introduced the quanti-
zation of Weyl, which is a technique used to describe
quantum mechanics from the phase-space of classical
mechanics. This elegant description allows us to associate
a quantum observable with a real classical function that
depends on the canonical variables on the phase space
[18]. This technique provides a systematic way to descri-
be non-commutative spaces in general and to study the
theories of the fields defined on them. The condition of
Schwartz [19, 20] equally implies that any function f (x)
defined on a Euclidean vector space R? with D dimensi-
ons can be described by its Fourier transform f (k), by
the relation

= f(—k) if the function f (z) is real. (13)

J. Groenewold). It is an associative deformation of the
law of the product; it was first introduced during the
development of the possible statistical signification of
quantum mechanics and the relation between physical
quantities and quantum mechanics operators.

The product of two Weyl operators of two functions
provides the operator of Weyl associated with the star
product of the two functions, i.e. using Eqs. (13-14)
and according to the Baker—Campbell-Hausdorff (BCH)
formula [22, 23], we deduce that

W fIW [g] = W [f xg], (16)

where the Baker—-Campbell-Hausdorff formula (the first
few terms) is

1
ete? = exp A+B+§[A,B]

1
The noncommutative geometry is in turn described
at the level of functions, actions and fields by the
Gronewold—Moyal product. If the two functions vary in
terms of z and p, f(x,p) and g(z,p) are assumed to be
infinitely differentiable, the Moyal product can be used
as follows [24, 25]
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i i
(fxg)(z,p) = exp [2®ab8z08@ + me@pa@pb} [ (Za,pa) 9 (xp,pp) = f(z,p)g(z, p)
1\ /i\"
+ ) (m) <2> Qubt . @b gz 92 f(x,p)of ...08 g(x,p) (18)

1 i\"
+ Zl (m) <2> nib bl O f(2,p), ... 0f g(x,p).

When the two functions vary in terms of x only, then Eq. (18) is reduced to [26, 27|

(7)) = exp | 30000 (22) g (a1) = f(@)olo)

1 i\"
+ Z_:l <m> (2> QubL @y, ... 8y, [(x)By, ..., 9(x). (19)

The noncommutative field theories for slow-variation or low-energy fields (6F? < 1) at the classical level are
completely reduced to their commutative versions, because of the nature of the star product. But this is just the
classical result and quantum corrections will reveal the influences of © even at low energies [28].

B. Some properties and rules

Below we summarize some useful properties and identities [29] of the star product algebra. Let f , g and h be three
arbitrary functions from R

1. The star product is noncommutative

f(@p)*g(z,p) # g(z,p)x f(z,p), ontheotherhand f(z)xg(x)=g(@)xf(x)| (20)
2. For © = n =0, we find the commutative case
Flap)xg(@.p)|,_  =1f@p)gp). (21)
3. The complex conjugation
(f (@) *g(2)" =g" () x (). (22)
4. The star product between exponentials
T 4 11T — ei(k+q)$e*%(mq>, with kAqg=k"q"0,.. (23)
5. Representation of momentum space
) = / Fk) e dPk, g (x) = / G(k) e*dPk,  and () = / o (k) e dP, (24)

where f (k), g (k) and h (k) are the Fourier transforms of the functions f, g and h respectively. Using Eq. (23)
we find

~ - k6

f(@)xg (@) = / F (k)3 (q) 5% i+ gPE Py (25)

2002-4



ON THE NONCOMMUTATIVE GEOMETRY IN QUANTUM MECHANICS

6. The associativity: Using the property (25) we find

((f*g)*h) ( / F(k)§(q)h(p)e 5 et 3" gilktatn)e gD P gqPy, (26)

(F* (g% h)) ( / F (k)3 (q) b (p) 5 e S il atniz gD gD galp, (27)
the star product is associative
(f (@) * g () * h(z) = [ () * (9 () x h(x)) = f (%) * g (x) * h(z). (28)

7. The star product under the integral sign
[ro@as= [(gen@ae= [ (f9) @)%, (29)

we learn that the kinetic part of the actions (which are quadratic in the fields) is the same as its commutative
version. Thus, free-field propagators in commutative and noncommutative spaces are the same. This property
follows for Schwartz functions on R” via the integration by parts.

8. The integration over the space coordinates = has the cyclic property and all the properties of the Tr in the
matrix calculation

/(f*g*h)(x)dDa;:/(h*f*g)(m)de:/(g*h*f)(a:)de. (30)

9. Leibniz’s rule
O (f*9) = (Ouf) x g+ fx(0u9). (31)
10. The Moyal commutator in terms of the first-order deformation quantization of ©
(.9l = fxg—gxf=I[f g +i070:fdg; +0(8°f.89), (32)
for an Abelian group ([f, g] = 0), the above equation becomes

[f,9], = i©78;f9g; + 0 (8°f,5°9) . (33)

An Abelian group (according to Niels Abel), also called a commutative group, is a group in which its internal
composition law is commutative.

[

V. THE SEIBERG-WITTEN (SW) MAPS star product (19), and we can write the star commutator
to the first order by Eq. (32). The noncommutative

The idea of the Seiberg-Witten maps has attracted YangMills action is as follows [30]

a lot of attention and has been studied in depth in )

recent years, .malnly on the basis that t.he'th‘eory of g —fTr/F“”*FW Ak
noncommutative gauges appears as a certain limit of the

string theory. The relation to the string theory gives an 1 A B

interesting result: Noncommutative gauge theories can = _ZTY FP Fl d7k, (34)
be mapped to commutative theories [6].

. where the strength tensor of the non-commutative gauge
When you have a non-Abelian theory, such as the .9 4 is
n

Yang—Mills theory(this type of theory was introduced in
1950 by C. N. Yang and R. Mills), the gauge structure

will be encoded in commutators and anti-commutators. F,“, = 6MAV - AHG,, —1 [Aw /11,} . (35)
On the other hand, for an Abelian theory, all the *
commutators disappear. On the noncommutative side, Equation (34) is invariant under the following

the usual multiplication of functions is replaced by the = noncommutative gauge transformations

2002-5



Ilyas HAOUAM

6idu = 0ud+ilA, A, = Dud,
with
§iF., =i [/i, F,WL . (36)

Here A is the gauge parameter in the noncommutati-
ve case. Take into consideration that for a commutative
gauge theory, the potential four-vector of the gauge is 4,
(where the gauge parameter is A), with the gauge field
strength tensor

Fl“’ - 8,“41, - Aﬂay - 7/ [Ap,v AV} ’ (37)

we must differentiate the operators A, A, 4, ... (with
circumflex) and those without circumflex A, A9, ... .
Knowing that the transformations of the commutative
gauge are

OpA, =0, A+i[A A =D,A,
with
OaFu =1[A F). (38)

The Seiberg-Witten maps make a connection (an
equivalence relation) between a commutative and a

A, —2 A, +0A,

Lol

Ay A, 164,

where it is equivalent to transforming function A, by
0 and to transforming the noncommutative connection
fl# by 6. This is what we will call the Seiberg-Witten
equation

Spd, —0,A=i [/i, A“L . (41)

To solve Eq. (39), we use the condition of consi-
stency(coherence) of noncommutative gauge [30]

ibadp —ibgda — [Aa,Ag| =idipap,  (42)
and its ordinary counterpart given by

0005 — 000 = 0_ifa.5) = Saxp (43)

where «, 8 are Hermitian matrices. Take into account
that for the components of order n of A, and Ag,
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Ap+0A, = A, +64, o

noncommutative gauge theory. Such a relation between
the noncommutative gauge theory and its ordinary
(homologous) counterpart can also be demonstrated
using only the algebraic structure of the aforementi-
oned noncommutative space (canonically deformed) and
the x—product without reference to the string theory
[21, 30, 31]. So it is possible to define an SW map that
links as an equivalence relation of gauge by

AL (A;0) 46,4, (A;0) = A, (A+5,4;0).  (39)

Note that the noncommutative gauge field flu and the
noncommutative gauge parameter A have the following
functional dependency (i.e. one can consider them as
functional ordinary fields A,,, F),,)

The transformation comes down to the following di-
agram (according to [32])

it is then possible to write a coherence equation of
noncommutative gauge

i A —ibsAr — Y [/ig,/ig}*

ptgtr=n

= i/ﬂi[a,ﬁ]a (44)

s

and <" denotes

1 /i\"
T I 4
4o = (3) (45)
x QU Q¥ 9, ..., f(x), ... 0. g(x).
Consequently,
a X ﬂ = _Z [aaﬁ] = Oéaﬂbfcach,
with (46)
fETe = =i [1°, 1],
where T® are representations of a group SU(N),
consequently, a non-Abelian gauge theory is based on
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this Lie algebra. More precisely, we write «, 8 from
A, which form a representation of the T-algebra (the
generators T of the Lie algebra). Knowing that A, =
C [[3%1, .. ,i"N]] /R, in which the non-commutative
space can be defined as the associative algebra over C,
which consists of the algebra freely generated by the
coordinates and then divided by the ideal R. For the
components of order n of A, and A,, it is also possible
to write a gauge consistency equation

Sudy =0,A7 — Y [AD, AL, (47)

pHgt+r=n

To find SW maps of the noncommutative gauge
parameter A and the field of the noncommutative
gauge A,, we can solve the condition of consistency
(42) and the equivalence gauge (39). For this purpose,
noncommutative variables can be extended as a series of
formal powers in ©

A, = A, + AP + AP

Fu = Fu+FD+FD + ... (48)

A = A4+40 4 4@ 4

the terms of zero-order are ordinary counterparts.
Moreover, allowing the theory to be a valued envelopi-
ng algebra, we can construct the noncommutative gauge
theory for an arbitrary gauge group such as SU(N).
Furthermore, we will not specify the gauge group and
the results will be valid for a group of an arbitrary non-
Abelian gauge.

Thus, we have the first-order solution given in the ori-
ginal document [3]

AL = —i@’“ {Ay, 0ra},

1
AD = 2O (A, 034, + Far}, - (49)

where Oya = 0,4\ — i[a, Ay]. We can also find the
strength tensor of the first-order field (35)

J QD —

1
p Z@k/\({Akaaz\va+D/\Fw}

— 2€{F, Fa}), (50)

where the products on the right hand side in the above
equations, such as {A, Oha} = Ap.0va + Oha. Ay are
ordinary matrix products.

It should be emphasized here once again that
these solutions are not unique because one can add
homogeneous solutions to (49) with arbitrary coeffici-
ents. However, the structure of these solutions will be
useful to obtain recursive solutions to all orders.

Indeed, the explicit solutions for SW maps of the
non-Abelian gauge theory have been found by various
authors until the second-order of © [30, 33, 34]. Because
of the liberty in the solutions (49), these maps are

different from each other by a homogeneous solution
with different coefficients. Finally, explicit Seiberg—
Witten maps of noncommutative fields obviously are
necessary to understand physical predictions and to veri-
fy the behavior of the noncommutative theory itself, such
as the renormalizability.

VI. THE BOPP-SHIFT LINEAR TRANSLATION
A. The Bopp-shift translation

In the noncommutative phase-space, coordinates x}°
and momenta p?° satisfy the commutation relations (2),
and using equations (1-2), we can represent variables z}°
and p?© in terms of z;and p; by [35, 36]

$?C = a;;x; + bijpj and p?c = C;jxj + dijpj
with (51)

t,j=1,...,n.

The system of equations (51) can also be rewritten as

follows
:L.DC A B T
<pnc>:<cp><p>’ (52)
Where A = (aij), B = (bij),and C = (Ci]’), D = (d”)
aresquare matrices of n X n dimension.
We calculate the exact form of the above matrices.
For this, we use equations (1-2 and 51), we obtain the
following system of equation

ABT — BAT = 9
h
¢DT — DOT = % (53)
eff
ADT — BCT = hﬁ Lscn.-

Matrices A and D can be chosen proportionally to the
identity operator, which we respectively designate by «
and 3, which means a;; = od;; and d;; = (6;; where
«a and f are two scaling constants. Thus, the system
becomes

@ (BT - B) =0

p(C=C=n (54)

BCT = (af — 1) Iyxn
according to the first two equations in Eq. (54), we can
see that, if B, C' are antisymmetric, they will have expli-
cit solutions. The third equation in Eq. (54) is satisfied

only when B, C' are symmetric or antisymmetric. The
symmetrical case of B, C leads to © = n = 0 (which
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means that our space is commutative). So we choose B,
C' antisymmetric, and we find

1 1

2ah

By substituting the expressions of A, B, C' and D in
the third equation of Eq. (53), we get the generalized
expression of the effective Planck constant

(56)

J

We insert Eq. (55) in Eq. (52) and obtain

odyxn _ﬁ@ T
) e
255" Blnxn p

so Eq. (51) becomes [37]

/N
=8
=E)
o o0
~__—
I

n 1 n 1 . -
¢ = ax; — ﬁgijpj’ i = Bp; + %Uijmja with ¢,7=1,2...,n. (58)
The above equations (58) are the generalized Bopp-shift transformation, with o« =1 — STZ and 8 = 1. Generally
in the calculations, we take a = 8 = 1, so Eqs. (58, 56) become
nc 1 nc 1 eff 677 . ..
x; :xif%Gijpj, Dy :piJr%mjxj and *" = h + e with 4,7 =1,2,...,n. (59)

When we consider a 2-dimensional non-commutative phase-space (i,7 = 1,2), we have

nc

For i =1,

. 1
For i =2, x3°=y"=y+ ?h@pm, P3¢ ZPZC =Py

so finally, we find the following Darboux transformation

nc

"=z — —1 (C) ne = p, + —1
= o Dy, Dy = Pz 2h77y
(62)

nc + 1 @ nc 1
- oy T = — 5z hT.

We can say that the operators of noncommutativity in
phase-space are linked to the commutative operators by
the Heisenberg—Weyl algebra in terms of the Bopp-shift
linear translation introduced from Eq. (62).

B. Time-dependent Bopp-shift translation

The new deformed geometry of time-dependent non-
commutativity in phase-space is linked to commu-
tative geometry by the Heisenberg—Weyl algebra via the
time-dependent linear Bopp-shift linear transformation
introduced from the equation

r(t) = w; — Th@ij(t)pja pi¢=pi+ Thmj(t)xj,
with
ii=12.. .. (63)
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nc 1 nc nc 1
7 =2 =x— 2 Opy, P =P = e+ (60)

1
2h7ll”7

(

For a 2-dimensional noncommutative phase-space and
according to Eq. (11), it becomes [3§]

1 1
x2"(t) =z — —@e'ytpy, Pa(t) = po + %ne_“’ty

2h
(64)
yet) =y + Loep py°(t) =py — ety
2h wy Y 2 '
For v = 0, the time-dependency in the structure
of the noncommutative parameter is canceled. When
© = n = 0, the systems of noncommutative phase-

space (62) and time-dependent noncommutative phase-
space(64) will become commutative systems. We would
like to note that if we have a problem of a charged parti-
cle in an electromagnetic field it would be quite well
to approach it via the Seiberg-Witten maps. On the
other hand, if we have a magnetic field interaction (or
a problem of a quantum neutral particle moving under
the action of a Newtonian gravitational potential for
instance), we will follow a quite standard approach, that
has been widely used in the literature on noncommutati-
ve quantum mechanics, which depends on obtaining a
noncommutative version of a given field theory through
the Moyal-Weyl product.
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VII. CONCLUSION

In conclusion, the techniques described in this
paper have proved to be invaluable methods for the
study of noncommutative quantum mechanics and
noncommutative field theory. As remarked in this
paper, the noncommutativity is ordinarily formulated
and coded mainly in terms of four methods, which
are: (i) the ordinary product with Weyl operators, (ii)
by replacing the ordinary product with the product
of Moyal-Weyl in the functions and actions of the
systems, (iii) using Bopp-shift linear transformations,

(iv) through the maps of Seiberg—Witten. It is also
worth clarifying that the noncommutativity could be
time-dependent; we explained the reasons behind this,
besides we extracted a time-dependent noncommutative
algebra through noncommutative parameters considered
exponential functions. Of course, we confirm that there
are other options for noncommutative parameters forms.
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Ilyas HAOUAM

I[IPO HEKOMYTATUBHY I'EOMETPIIO ¥ KBAHTOBIN MEXAHIITI

Inpsac Tasam
Yuieepcumem imeni 6pamie Menwmypi, Konemanmuna, Aaocup

VY crarTi HaBemeno oryan GopMai3My, AKUN BiAIrpa€ IEHTPAJIBbHY POJb y OLIBIIOCTI JOCIIiIKEeHb, MO CTO-
CyIOThCd HeKoMyTaTuBHOI reomerpii. OnucaHo HasBHI MeTOny, sKi yCHINIHO [03BOJISIOTH BUKOPHCTOBYBATH Ta
3aCTOCOBYBATH HEKOMYTATHUBHICTH (ha30BOr0 MPOCTOPY SK y KBAHTOBIM MexaHimi, Tak 1 y KBAHTOBIN Teopil mo-
sisi. 30KpeMa, KOPOTKO TMOsSICHEHO KBaHTyBaHHsd Beiinga, mobyrok Mosuta—Beiuis, nepersopenns 3cyBy Borma Ta
Bimobpaxkenus 3aitbepra—Birrena.

Kiro4dosi ciioBa: HEKOMyTaTHBHA Fe€OMETpisi, HEKOMYTATUBHA KBAHTOBA MEXaHIKa, KBAaHTyBaHH: Beiiss, mo-
6yrok Mosuta—Beiiis, nepersopenns 3cyBy Bomma, Binobpaxkenns 3aiibepra—Birrena, Binobpakenns Beitisa—
Birmepa, criBBiIHOIIEHHS HeBU3HAYUEHOCTEIX.
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