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Evolution of cosmological perturbations is considered in the model with dynamical dark energy
which non-gravitationally interacts with dark matter. The dark energy equation of state parameter
(EoS) is varying in time and is parameterized by its adiabatic sound speed. Such model of interacting
dark energy has advantages over the model with constant EoS, because it avoids non-adiabatic
instabilities of dark energy in the radiation dominated epoch for certain types of interaction in the
dark sector. The stability conditions for the solutions of equations of dark energy perturbations
were derived. The impact of the strength of additional interaction between dark components on the
evolution of the density and velocity perturbations in them is analysed for the quintessence and
phantom types of dark energy.
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INTRODUCTION

All current observational cosmology data indicate that
beside visible matter (which consists of the particles of
the Standard Model) there is a dark sector of unknown
components � dark energy [1, 2] and dark matter.
The cosmological model which more or less �ts the
observational data is ΛCDM model. However, this model
has problems of the interpretations of the observati-
onal data that appeared in the post Planck cosmology
[3�6]. So we can make our model more complicated,
where there may exist some non-gravitational coupli-
ngs between dark components, which make signi�cant
impact on the expansion dynamics of the Universe and
the formation of its large-scale structure. Such cosmologi-
cal models were studied in works [7�11]. As follows from
[12�14], they can resolve some problems.
It is known that in the dark energy models wi-

th a constant equation of state parameter (EoS) the
instabilities of cosmological perturbations appear in
the radiation-dominated epoch if an additional non-
gravitational interaction is present [15, 16]. The solution
of this problem as mentioned in papers [15] and [17] can
be the dynamical dark energy with varying EoS [18�22].
In this paper, we study the evolution of cosmologi-

cal perturbations in a three component Universe which
consists of dynamical dark energy, dark matter and pri-
mordial electromagnetic radiation. The dark components
non-gravitationally interact with each other (DE�DM
interaction). The dark energy is represented by a model
with the varying EoS parameter w which is parameteri-
zed by adiabatic sound speed ca and EoS parameter
at present time w0 [23�25]. The dark matter is descri-
bed by a pressureless ideal �uid model; however e�ective
pressure as a result of the energy-momentum exchange
between the dark energy and the dark matter can arise.
The DE�DM interaction term in general-covariant

conservation equations for dark energy and dark matter

is proportional to some function of the energy densiti-
es of the dark components. In this paper, we explore
cosmological models with the simplest interactions,
which are linearly dependent on the density of dark
components.

I. MODEL OF INTERACTING DYNAMICAL
DARK ENERGY

We consider the spatialy �at homogeneous and
isotropic Universe with Friedman�Lema��tre�Robertson�
Walker (FLRW) metrics:

ds2 = gikdx
idxk = a2(η)[dη2 − δαβdxαdxβ ], (1)

where gik is metric tensor, a(η) is scale factor, η is
conformal time, which is related to physical time t by
dt = a(η)dη. Hereafter we assume that the speed of light
c equals unity. At present, time a(η0) = 1. Each of the
components � dark energy, dark matter and black-body
electromagnetic radiation � is described by an ideal �uid
approximation with energy-momentum tensor:

T k(N)i = (ρ(N) + p(N))u(N)iu
k
(N) − p(N)δ

k
i , (2)

where ρ(N) is energy density of N component, p(N) is
its pressure, u(N)i is 4-vector of velocity. The equation
of state of each component is given by p(N) = w(N)ρ(N),
where for dark energy wde = w, for dark matter wdm = 0
and for radiation wr = 1/3.
The general-covariant conservation law

∑
N T

k
(N)i;k =

0 gives the following equations for the evolution of the
energy and momentum densities of the dark components
in the with DE�DM interaction

T k(de)i;k = J(de)i, (3)

T k(dm)i;k = J(dm)i, (4)
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where J(de,dm)i describes the DE�DM interaction
between the components, the semicolon denotes the
covariant derivative. It follows from the energy-
momentum conservation law that J(de)i + J(dm)i = 0,
so we can just put J(de)i = −J(dm)i = Ji. For the
unperturbed medium with metric (1) the conservation
equations are as follows:

˙̄ρde + 3aH(1 + w)ρ̄de = J̄0, (5)

˙̄ρdm + 3aHρ̄dm = −J̄0, (6)

where the dot denotes the derivative with respect to
conformal time η, H = ȧ/a2 is the Hubble parameter
which characterizes the expansion rate of the Universe,
J̄0 is the background 0-component of Ji.
Also from Einstein's equations

Rik −
1

2
Rgik = 8πG

∑
N

T(N)ik (7)

one can obtain equations for the expansion dynamics of
the Universe in FLRW metrics (1):

H2 =
8πG

3

∑
N

ρ̄(N), (8)

qH2 =
4πG

3

∑
N

(ρ̄(N) + 3p̄(N)), (9)

where q ≡ − ä
a3H2 + 1 is the deceleration parameter.

The dark energy with the coupling linearly dependent
on the density of the dark matter is unstable when w is
close to −1 at the scales much larger then the Hubble
horizon in the radiation dominated epoch [15]. To avoid
this, we consider a more general model of dynamical dark
energy, where w is variable in time like in paper [17]. In
this work, we consider the dynamical dark energy with
adiabatic sound speed c2a ≡ ˙̄pde/ ˙̄ρde = const [23�25].
Such parameterization gives us a possibility to explore
larger numbers of the valuable interacting quintessence
and phantom dark energy models. This condition and
conservation equation (5) lead to equation:

dw

da
=

3

a
(1 + w)(w − c2a)− J̄0

ρ̄dea2H
(w − c2a). (10)

For the EoS parameter, we have also the connection
to the density of dark energy for an arbitrary form of
interaction:

w = c2a + ρ̄
(0)
de

w0 − c2a
ρ̄de

.

where w0 is the EoS parameter in the present epoch.
To describe the expansion dynamics of the Universe, we
must solve the system of equations (5), (6), (10) and (8).
Also, we must determine in which form the background

interaction term J̄0 is to be set. Here we assume that in
the general case it depends on H, ρ̄de and ρ̄dm.
For convenience we will rewrite the conservation

equations in such form:

˙̄ρde + 3aH(1 + w + Πde)ρ̄de = 0,

˙̄ρdm + 3aH(1−Πdm)ρ̄dm = 0,

where

Πde = −J̄0/
(
3aHρ̄de

)
, Πdm = −J̄0/

(
3aHρ̄dm

)
are e�ective corrections to the EoS parameters of the
dark components, which appear as a result of the non-
gravitational interaction between the components.

II. COSMOLOGICAL PERTURBATION
EQUATIONS FOR NON-MINIMALLY COUPLED

DARK ENERGY MODEL

Perturbations of a energy-momentum tensor

Let us consider the perturbed parts of conservation
equations (3), (4) and Einstein's equations (7). In the
conformal-Newtonian gauge, the perturbed metric is:

ds2 = a2[(1 + 2Ψ)dη2 − (1− 2Ψ)δαβdx
αdxβ ]. (11)

The perturbed part of energy-momentum tensor (2) for
each component

T ki = T̄ ki + δT ki ,

can be represented by the perturbed density, pressure
and 4-velocity:

ρ = ρ̄(1 + δ), p = p̄+ δp,

ui = ūi + δui,

δui =

(
−Ψ

a
,
vα

a

)
,

where vα ≡ dxα

dη and ūi = (a−1, 0, 0, 0). Hence, the

components of the perturbed energy-momentum tensor
of the perfect �uid are as follows:

δT 0
0 = ρ̄δ, δTα0 = (ρ̄+ p̄)vα,

δT 0
α = −(ρ̄+ p̄)vα, δT βα = −δαβδp.

The perturbation of the pressure of the dark energy in
the conformal-Newtonian gauge can be presented as a
sum of the adiabatic and non-adiabatic parts:

δpde = c2aρ̄deδde + δpn−ad,

In the rest frame of dark energy, the perturbation of
pressure is:

δp
(rf)
de = c2sρ̄deδ

(rf)
de ,

where c2s is the e�ective sound speed of dark energy in its
rest frame. Using linear transformations between gauges,
one can obtain a general expression for the perturbation
of pressure in the conformal-Newtonian gauge:

δpde = c2sρ̄deδde

−(c2s − c2a)[3aH(1 + w)ρ̄de − J0]

∫
(vde, dx) .
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Covariant form of the DE�DM interaction term

In [26] we studied the expansion dynamics of the Uni-
verse with the DE�DM interactions of three types:

J̄0 = −3αaΓρ̄cr, (12)

J̄0 = −3βaΓρ̄de, (13)

J̄0 = −3γaΓρ̄dm, (14)

where α, β and γ are coupling constants, ρcr ≡ 3H2
0

8πG is
critical density. There are two most common choices for
Γ in the papers devoted to non-minimally coupled dark
energy: Γ = const [15, 27�29] and Γ = H [9�11, 16, 30�
35]. We analyse the case when Γ = H.
Here the DE�DM interactions are written for the

unperturbed 0-component of Ji. In the case with
perturbations, it must be written in a more general
form for dark components with energy-momentum tensor
(2). Also, it must satisfy the general covariance princi-
ple, since the physics of such interaction must not be
dependent on the change of the reference frame. In this
work, we use the covariant form of the DE�DM interacti-
on from [36]:

Ji = −f(ρde, ρdm)uk(T );ku(dm)i. (15)

Here the energy density of each dark component is de�-
ned in the reference frame of dark matter:

ρ(M) = T(M)iku
i
(dm)u

k
(dm),

where index M = (de,dm). The background part of this
interaction has the form (12)�(14). As a result, interacti-
on Ji in the conformal-Newtonian gauge is:

J0 = −3aHf̄(ρ̄de, ρ̄dm)(1 + ε)

+f̄(ρ̄de, ρ̄dm)

(
3Ψ̇−

∑
α

∂vαT
∂xα

)
, (16)

Jα = 3aHf̄(ρ̄de, ρ̄dm)vαdm, (17)

where ε ≡ δf/f̄ and vαT =
∑
N (ρ(N) +

p(N))v
α
(N)/

∑
N (ρ(N) + p(N)). If coupling constant goes

to zero then the energy-momentum transfer between
dark components vanishes. If the coupling constant goes
to zero, then the energy-momentum transfer between
dark components vanishes. If perturbations vanish, then
(16)�(17) reduce to the background form of (12)�(14).
In this paper, we study such partial cases of interactions
(16), (17) with functions f̄ , ε:

f̄ = αρ̄cr, ε = 0, (18)

f̄ = βρ̄de, ε = δde, (19)

f̄ = γρ̄dm, ε = δdm, (20)

Analytical solutions of background equations (5), (6)
and (10) were obtained for the DE�DM interactions wi-
th the linear dependence of f̄ on the densities of dark
components and studied in detail in the papers [26, 37].

Cosmological perturbation equations

Conservation equations (3), (4) and Einstein's equation (7) together with the DE�DM interaction (16), (17) give
the system of equations for the evolution of the density and velocity perturbations of dark matter, dark energy and
radiation as well as the metric perturbation function Ψ

δ̇de = −3aH(c2s − w)δde + 3(1 + w)Ψ̇ + (1 + w)[k2 + 9a2H2(c2s − c2a)]Vde

+ Πde[3aH(δde − ε) + 3Ψ̇ + k2VT + 9a2H2(c2s − c2a)Vde], (21)

V̇de = −aH(1− 3c2s)Vde −
c2s

1 + w
δde −Ψ + 3aH

Πde

1 + w
[(1 + c2s)Vde − Vdm], (22)

δ̇dm = 3Ψ̇ + k2Vdm −Πdm[3aH(δdm − ε) + 3Ψ̇ + k2VT ], (23)

V̇dm = −aHVdm −Ψ, (24)

δ̇r = 4Ψ̇ +
4

3
k2Vr, (25)

V̇r = −Ψ− δr
4
, (26)

Ψ̇ = −aHΨ− 3

2
a2H2(1 + wT )VT , (27)
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where δ is the Fourier amplitude of the density
perturbation, V ≡ −i(k,v)/k2 is proportional to the
Fourier amplitude of the velocity perturbation, Ψ is
the Fourier amplitude of the metric perturbation and
wT =

∑
N w(N)ρ̄(N)/

∑
N ρ̄(N). This system of equations

should be integrated with equations (5), (6), (8), contai-
ning the background energy densities of each component.
Equations (21)�(24) in the non-interacting case are the
same as the perturbation equations in the linear approxi-
mation in paper [38].

III. BACKGROUND ASYMPTOTIC
EVOLUTION OF DARK COMPONENTS

Interaction f̄ = αρ̄cr

Let us consider the expressions for the background
energy densities of dark components ρ̄de, ρ̄dm [26] in the
model of interacting dark energy with a coupling to dark
matter independent of its densities (18):

ρ̄de(a) = ρ̄
(0)
de

(1 + w0)a−3(1+c2a) − w0 + c2a
1 + c2a

− αρ̄cr
1− a−3(1+c2a)

1 + c2a
,

ρ̄dm(a) = ρ̄
(0)
dma

−3 + αρ̄cr(1− a−3).

The dark energy is quintessential when c2a > −1.
In the radiation dominated epoch, we have such

asymptotes for the quintessence dark energy: w = c2a,
Πde = 0, Πdm = 0.
The dark energy of a phantom type when c2a < −1.

The asymptotes in the early epoch are:

w =
αc2a − (w0 − c2a)Ωde

α+ (w0 − c2a)Ωde
, Πde = − α(1 + c2a)

(w0 − c2a)Ωde + α
,

Πdm = 0.

The condition of the positive energy densities of dark
components, ρ̄dm ≥ 0 and ρ̄de ≥ 0, leads to the constraint
for the value of interaction parameter [26].

Interaction f̄ = βρ̄de

For the interaction proportional to the density of dark
energy ρde (19), we have such expressions for the energy
densities of dark components [26]:

ρ̄de(a) = ρ̄
(0)
de

(1 + w0 + β)a−3(1+c2a+β) − w0 + c2a
1 + c2a + β

,

ρ̄dm(a) = ρ̄
(0)
dma

−3 + βρ̄
(0)
de

[(
A

c2a + β
+B

)
a−3

− A

c2a + β
a−3(1+c2a+β) −B

]
,

A =
1 + w0 + β

1 + c2a + β
, B =

w0 − c2a
1 + c2a + β

.

In this case the dark energy is quintessential, when
β > −1 − c2a. In the radiation dominated epoch, for a
quintessence model with the conditions of positivity of
densities of dark components taken into account we have
such asymptotes: w = c2a, Πde = β, Πdm = 0.
For phantom model (β < −1−c2a) we have: w = −1−β,

Πde = β, Πdm = 0.

Interaction f̄ = γρ̄dm

For the interaction proportional to the density of dark
matter ρdm (20) the expressions for densities ρde, ρdm
are as follows [26]

ρ̄de(a) = ρ̄
(0)
de

[
(1 + w0)a−3(1+c2a) + c2a − w0

1 + c2a

+ γ
Ωdm

Ωde

1− a3(c2a+γ)

c2a + γ
a−3(1+c2a)

]
,

ρ̄dm(a) = ρ̄
(0)
dma

−3(1−γ).

For the density of dark energy to be positive, the followi-
ng conditions must be satis�ed: γ > 0, c2a + γ < 0.
Also, as we see from the expression for ρ̄dm, the coupli-
ng constant must have small value γ � 1 in order to
avoid a contradiction with astronomical observations. In
the early epoch, when a → 0, the densities of the qui-
ntessence and phantom dark energies diverge ρ̄de → ∞,
ρ̄dm →∞.
The asymptotes for the quintessence and phantom

dark energies in the early epoch are as follows: w = c2a,
Πde = −c2a − γ, Πdm = γ.
The energy density of radiation, which is in equations

(8), (9), changes over all time in a standard manner ρ̄r =

ρ̄
(0)
r a−4.

IV. INITIAL AND STABILITY CONDITIONS
FOR A SYSTEM OF PERTURBATION

EQUATIONS

For scales much larger than the Hubble horizon (kη �
1), in the early epoch the dark energy, dark matter
and radiation components behave as an adiabatic �uid.
Hence the relative entropy perturbation between arbi-
trary two components x, y is equal to zero:

Sx,y = aH

(
δx

( ˙̄ρx/ρ̄x)
− δy

( ˙̄ρy/ρ̄y)

)
= 0. (28)

In the early epoch, the radiation component has a domi-
nant impact on the expansion dynamics of the Universe:
a = H0

√
Ωrη (Ωr is the relative energy density part of

radiation in the present epoch). Moreover, the gravitati-
onal potential Ψ of cosmological perturbations is de�-
ned by radiation mainly, so, the dark components are
dynamically test ones, they practically do not a�ect it.
Hence, at the superhorizon stage when the initial condi-
tions are to be set, equations (21)�(27) can be simpli�ed
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and only the �rst four equations from the seven can be
analyzed because Ψ = const then. Making the transiti-
on in equations (21)�(24) to the derivative with respect

to N = ln(kη), we obtain the perturbed conservation
equations in the radiation dominated epoch as follows

dδde
dN

= −3(c2s − w)δde + 9H0

√
Ωr(1 + w)(c2s − c2a)Ṽde + 3Πde[δde − ε+ 3H0

√
Ωr(c

2
s − c2a)Ṽde], (29)

dṼde
dN

= −(2− 3c2s)Ṽde −
c2s

H0

√
Ωr(1 + w)

δde −
1

H0

√
Ωr

Ψ + 3
Πde

1 + w
[(1 + c2s)Ṽde − Ṽdm], (30)

dδdm
dN

= −3Πdm(δdm − ε), (31)

dṼdm
dN

= −2Ṽdm −
1

H0

√
Ωr

Ψ, (32)

where Ṽ ≡ V/a. If Πde, Πdm and w are constants in the
early epoch, we can obtain analytical solutions of these
equations, which in the general case for all three types
of the DE�DM interaction are:

δde = −3

2
(1 + w + Πde)Ψ + δ∗de, (33)

δdm = −3

2
(1−Πdm)Ψ + δ∗dm, (34)

δr = −2Ψ, (35)

Ṽde = − 1

2H0

√
Ωr

Ψ + Ṽ ∗
de, (36)

Ṽdm = − 1

2H0

√
Ωr

Ψ + Ṽ ∗
dm, (37)

Ṽr = − 1

2H0

√
Ωr

Ψ, (38)

where δ∗de, δ
∗
dm, Ṽ

∗
de, Ṽ

∗
dm are the deviations from adi-

abatic constant solutions. For all the three cases of the
DE�DM interaction considered in this work δ∗dm = 0,
but in the general case it could be the non-zero function
of N . In the non-interacting case, these non-adiabatic
perturbations vanish fast. But when there is a DE�
DM interaction, then they can increase over time, so
the solution (33)-(38) is not stable at supper-horizon
scales in the radiation dominated epoch. As mentioned
before, when we have the quintessence dark energy wi-
th the constant EoS parameter being close to −1, for a
DE�DM interaction dependent on the density of dark
matter (20), the super-horizon non-adiabatic mode of
dark energy perturbations in the radiation dominated
epoch are unstable [15]. In the model of dynamical dark
energy which we study, the EoS parameter is variable in
time but in the early epoch (both in the quintessence
and phantom models) it can be assumed constant. So we
can use the initial conditions (33)�(38) but now the dark
energy EoS parameter in the early epoch does not need
to be close to −1, while staying close to this value in the
modern epoch.

To derive the stability conditions for the perturbati-
ons of interacting dark energy in the radiation domi-
nated epoch, we use the Li�eard-Chipart criterion [39] for
the analysis of non-adiabatic solutions of perturbation
equations (29)�(32). It must be noted that these conditi-
ons must also be used with the density positivity condi-
tions of the dark components obtained in [26].

Interactions f̄ = αρ̄cr and f̄ = βρ̄de

For the interaction model independent of densities of
dark components (18) perturbations of dark energy are
stable at radiation dominated epoch for c2a < 0 and 0 ≤
c2s ≤ 1, both for quintessence and phantom dark energy.
For the interaction proportional to the density of dark

energy (19) (0 ≤ c2s ≤ 1) the stability condition for dark
energy perturbations at radiation dominated epoch for
−1 < c2a < 0 is

β < min

[
1 + c2a
1 + c2s

(
2

3
− c2a

)
,

2

3
(1 + c2a)

]
,

and for −∞ < c2a < −1 the dark energy is stable. This
result is in agreement with those obtained in [16].

Interaction f̄ = γρ̄dm

For the interaction proportional to the density of dark
matter (20), the quintessence dark energy is stable if γ >
γ0 for b1 < c2a < min(0, b2). If c2a is not in that range,
then there is an additional condition γ ∈ (−∞, γ1) ∪
(γ2, ∞), where

b1,2 = −d2 ±
√
d22 − 4d1d3
2d1

,

d1 = 9(1 + c2s)
2 + 12(1 + c2s) + 4,

d2 = 12(1 + c2s)− 24c2s(1 + c2s) + 8,

d3 = 4− 24c2s(1 + c2s),
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γ0 = −c2a −
1 + c2a

2 + c2s + c2a

(
2

3
− c2a

)
,

γ1,2 = −1

2
c2a −

1

3

1 + c2a
1 + c2s

∓ 1

18

1 + c2a
1 + c2s

√(
9

1 + c2s
1 + c2a

c2a − 6

)2

− 216
1 + c2s
1 + c2a

(c2s − c2a).

For phantom dark energy stability condition is γ < γ0
(−2 − c2s < c2a < −1) and γ > γ0 (c2a < −2 − c2s) with
additional condition γ ∈ (−∞, γ1) ∩ (γ2, ∞). This
result is also in agreement with those obtained in [15].

V. NUMERICAL RESULTS

The system of equations for the density and velocity
perturbations of dark energy, dark matter and radiati-
on (21)�(27) is integrated using the Fortran subroutine
dverk.f [40] based on the Runge�Kutta�Verner �fth and
sixth order method. The initial value of the gravitational
potential was taken as Ψ = −4.25 · 10−5 and the initial
scale factor as a = 10−10.
In Figs. 1�3 the evolution of the Fourier mode k =

0.01Mpc−1 amplitude of cosmological perturbations is
shown for the quintessence and phantom dark energy
models with a non-gravitational interaction. For conveni-
ence, we present the e�ective momentums of dark
components:

νde = (1 + w)Vde + ΠdeVT , νdm = Vdm −ΠdmVT ,

instead of velocity perturbations Vde and Vdm accordi-
ngly.
One can see, that in the conformal-Newtonian gauge,

the amplitudes of the dark matter density perturbati-
ons (bottom panels in the left columns of each �gure) at
the super-horizon stage (a < 0.001) are constant, while
the amplitudes of the dark matter velocity perturbati-
ons increase proportional to a (bottom panels in the ri-
ght columns of each �gure). This is well known from
classical papers [41] and [42]. The perturbations of qui-
ntessential dark energy at this stage evolve similarly and
independently of the type of interaction (upper panels of
upper part of �gures).

Interaction f̄ = αρ̄cr

Figure 1 shows the evolution of the density and
e�ective momentum perturbations of dark energy and
dark matter for coupling (18). One can see that the
density and e�ective momentum perturbations of qui-
ntessence dark energy δde and νde change their signs
at times closer to the modern epoch for a non-zero
interaction parameter. This happens due to the growth
of the momentum transfer between dark energy and
dark matter which is caused by the non-gravitational
interaction. The amplitude of the density perturbati-
ons of dark matter increases faster in the matter domi-
nated epoch, due to the impact of the dark coupling
on the gravitational potential perturbation, and slower

closer to the present epoch, due to an increase in
the e�ective pressure of dark matter compared with
the non-interacting case. In the phantom dark energy
model, compared with the non-interacting case, there are
changes in the sign of the density perturbation due to the
change of the sign of the dark energy e�ective momentum
νde. The perturbations of dark matter in the phantom
dark energy case evolve similarly as in the quintessence
case.

Interaction f̄ = βρ̄de

Figure 2 shows the evolution of the density and e�ecti-
ve momentum perturbations of dark energy and dark
matter for coupling (19). The oscillations of δde and
νde, which arise after entering the Hubble horizon, are
due to the impact of the DE�DM interaction on the
pressure of dark energy. Their amplitude is proporti-
onal to the interaction parameter β. The dark matter
density and velocity perturbations are very sensitive to
the value of the interaction parameter in the case of
quintessence, and practically insensitive in the case of
phantom dark energy. This has an obvious explanati-
on: Πdm = βρ̄de/ρ̄dm is essentially larger in the past
in the �rst case than in the second. The greater the
value of the interaction parameter, the more quintessenti-
al dark energy suppresses the increase in the perturbati-
on amplitude of dark matter. The initial evolution of the
phantom dark energy perturbations strongly increases its
dependence on the large values of interaction parameter
β, because at these values w is not constant, so the ini-
tial adiabatic conditions are not valid anymore, so we
must take the small values of β. The evolution of δde for
small values of β is de�ned by the evolution of e�ective
momentum νde, as in the previous interaction model.

Interaction f̄ = γρ̄dm

Figure 3 shows the evolution of the density and e�ecti-
ve momentum perturbations of dark energy and dark
matter for coupling (20). In this case, the evolution of
δde and νde after entering the Hubble horizon is di�erent
for quintessence and phantom: the former oscillates, the
latter alters the sign of amplitude. Also we see a signi-
�cant di�erence in the behaviour of the non-interacting
and interacting phantom dark energy models in the early
epoch. This is due the fact that for this type of coupling,
the phantom dark energy at the beginning behaves like
quintessence, its density decreases, and only after some
time does it begin to increase (see Fig. 5b in [26]). The
smaller the interaction parameter γ the shorter the peri-
od of the decrease of the phantom dark energy density.
But models of dark energy similarly a�ect the amplitude
of the density and velocity perturbations of dark matter:
the faster increase just after entering the Hubble horizon
and the slower increase at later stages compared with
minimally coupled models of dark energy. This behavi-
our of dark matter perturbations follows from Eq. (23)
and the fact that for this type of interaction Πdm = γ is
for both models of dark energy and any a.
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Fig. 1. In�uence of the DE�DM interaction independent of the densities of dark components on the evolution of the perturbati-
ons of the densities and e�ective momenta of dark energy and dark matter. Here Ωde = 0.7, Ωr = 5.0 · 10−5, k = 0.01Mpc,
c2s = 1.0. For quintessence dark energy (up) w0 = −0.9, c2a = −0.5, for phantom (bottom): w0 = −1.1, c2a = −1.25.
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Fig. 2. In�uence of the DE�DM interaction proportional to ρde on the evolution of the perturbations of the densities and
e�ective momenta of dark energy and dark matter. The values of cosmological parameters and parameters of quintessence
(up) and phantom (bottom) dark energies are the same as in Fig. 1.
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Fig. 3. In�uence of the DE�DM interaction proportional to ρdm on the evolution of the perturbations of the densities and
e�ective momenta of dark energy and dark matter. The values of cosmological parameters and parameters of phantom (bottom)
dark energy are the same as in Fig. 1. For quintessence dark energy (up): w0 = −0.9, c2a = −0.3.
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CONCLUSIONS

We studied the evolution of cosmological perturbations
in the model with dynamical dark energy coupled with
dark matter by an additional non-gravitation interacti-
on. This model, with variable a EoS parameter, behaves
in such way that in the early epoch EoS can be consi-
dered as constant. The dark energy perturbations here
are free from non-adiabatic instabilities at super-horizon
scales in the radiation dominated epoch. The stability
conditions for the perturbations of dark energy are in
the form of constraints on the value of the interaction
parameter obtained in an explicit way. We studied three
cases of dark coupling: independent on the densities of
dark components, proportional to the density of dark
energy and proportional to the density of dark matter.
In all cases the impact of the interaction on the evolution
of dark energy perturbations is larger than on the dark
matter ones. The impact of the interaction on the dark

matter cosmological perturbations is similar for all cases:
after the perturbations enter the Hubble horizon, their
growth is faster, and closer to the present epoch it is
slower. The strength of the impact depends on the type
of interaction, on the value of its parameter (α, β, γ) and
the type of the dark energy model. The results can be
useful for establishing of the observational constraints on
the nature of dark components and possible interaction
between them.
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Âèâ÷åíî ðîçâèòîê êîñìîëîãi÷íèõ çáóðåíü ó ìîäåëi íåñòàöiîíàðíîãî Âñåñâiòó ç òåìíîþ åíåð i¹þ, òåìíîþ
ìàòåði¹þ òà ðåëiêòîâèì âèïðîìiíþâàííÿì, ÿêi ¹ âèçíà÷àëüíèìè ñêëàäíèêàìè äèíàìiêè ðîçøèðåííÿ íà ði-
çíèõ åòàïàõ éîãî åâîëþöi¨. Ââàæà¹òüñÿ, ùî âñi êîìïîíåíòè âçà¹ìîäiþòü ìiæ ñîáîþ  ðàâiòàöiéíî, à òåìíà
åíåð iÿ é òåìíà ìàòåðiÿ ïîâ'ÿçàíi ùå äîäàòêîâîþ (ï'ÿòîþ) âçà¹ìîäi¹þ. Ïàðàìåòð ðiâíÿííÿ ñòàíó òåìíî¨
åíåð i¨ w çìiíþ¹òüñÿ ç ÷àñîì i ïàðàìåòðèçó¹òüñÿ ¨¨ àäiàáàòè÷íîþ øâèäêiñòþ çâóêó. Åâîëþöiÿ w òàêà, ùî
â ðàííþ åïîõó éîãî çíà÷åííÿ ìîæíà ââàæàòè ñòàëèì. Öå äîçâîëÿ¹ âèðàçèòè ïî÷àòêîâi óìîâè äëÿ äèôå-
ðåíöiàëüíèõ ðiâíÿíü, ùî îïèñóþòü êîñìîëîãi÷íi çáóðåííÿ â óñiõ êîìïîíåíòàõ, ÷åðåç àìïëiòóäó ôóð'¹-ìîäè
ìåòðèêè ïðîñòîðó-÷àñó. Êðiì òîãî, òàêà ìîäåëü òåìíî¨ åíåð i¨ äà¹ çìîãó óíèêíóòè íåñòiéêîñòåé íåàäiàáàòè-
÷íî¨ ìîäè çáóðåíü òåìíî¨ åíåð i¨, ùî âèíèêàþòü ó ìîäåëÿõ çi ñòàëèì w. Äëÿ âñòàíîâëåííÿ çîíè (äiëÿíêè)
äîïóñòèìèõ çíà÷åíü ïàðàìåòðà âçà¹ìîäi¨, çà ÿêèõ çáóðåííÿ òåìíî¨ åíåð i¨ ¹ ñòiéêèìè, âèêîðèñòàíî êðèòåðié
Ëi¹íàðà�Øèïàðà äëÿ ñèñòåìè ðiâíÿíü, ùî îïèñóþòü åâîëþöiþ êîñìîëîãi÷íèõ çáóðåíü â åïîõó äîìiíóâàííÿ
âèïðîìiíþâàííÿ. Ðîçãëÿíóòî òðè òèïè äîäàòêîâî¨ âçà¹ìîäi¨: íåçàëåæíî¨ âiä ãóñòèí ïðèõîâàíèõ êîìïîíåíò,
ïðîïîðöiéíî¨ äî ãóñòèíè òåìíî¨ åíåð i¨ i ïðîïîðöiéíî¨ äî ãóñòèíè òåìíî¨ ìàòåði¨. Ïðîàíàëiçîâàíî âïëèâ ïà-
ðàìåòðà íå ðàâiòàöiéíî¨ âçà¹ìîäi¨ íà åâîëþöiþ çáóðåíü ¨õíüî¨ ãóñòèíè òà øâèäêîñòi. Ïîêàçàíî, ùî ó òðüîõ
ðîçãëÿíóòèõ òèïàõ âçà¹ìîäi¨ ¨¨ âïëèâ íà çáóðåííÿ òåìíî¨ åíåð i¨ ¹ áiëüøèì, íiæ íà çáóðåííÿ òåìíî¨ ìàòåði¨.
Âïëèâ âçà¹ìîäi¨ íà åâîëþöiþ çáóðåíü òåìíî¨ ìàòåði¨ ó âñiõ òðüîõ âèïàäêàõ ¹ ïîäiáíèì: ïiñëÿ âõîäæåííÿ çáó-
ðåíü ó ãîðèçîíò ÷àñòèíêè âîíè çðîñòàþòü øâèäøå, íiæ áåç äîäàòêîâî¨ âçà¹ìîäi¨, à áëèæ÷å äî òåïåðiøíüî¨
åïîõè � ïîâiëüíiøå. Óñòàíîâëåíî, ùî åâîëþöiÿ êîñìîëîãi÷íèõ çáóðåíü çàëåæèòü âiä òèïó ìîäåëi òåìíî¨ åíåð-
 i¨ (êâiíòåñåíöiéíà ÷è ôàíòîìíà), òèïó íå ðàâiòàöiéíî¨ âçà¹ìîäi¨ ìiæ òåìíîþ åíåðãi¹þ òà òåìíîþ ìàòåði¹þ
i âåëè÷èíè ïàðàìåòðà öi¹¨ âçà¹ìîäi¨.

Êëþ÷îâi ñëîâà: âçà¹ìîäiþ÷à òåìíà åíåð iÿ, òåìíà ìàòåðiÿ, êîñìîëîãi÷íi çáóðåííÿ.

2902-11

https://doi.org/10.1007/s11433-019-9431-9
https://doi.org/10.1142/S0217732309030308
https://doi.org/10.1142/S0217732309030308
https://doi.org/10.1103/PhysRevD.74.023501
https://doi.org/10.1103/PhysRevD.74.023501
https://doi.org/10.1088/1475-7516/2009/01/020
https://doi.org/10.1088/1475-7516/2009/01/020
https://doi.org/10.1016/j.dark.2018.100261
https://doi.org/10.1016/j.dark.2018.100261
https://doi.org/10.1016/j.nuclphysb.2007.04.037
https://doi.org/10.1016/j.nuclphysb.2007.04.037
https://doi.org/10.1103/PhysRevD.75.083509
https://doi.org/10.1103/PhysRevD.75.083509
https://doi.org/10.1088/1475-7516/2010/11/044
https://doi.org/10.1088/1475-7516/2010/11/044
https://doi.org/10.30970/jps.21.3901
https://doi.org/10.30970/jps.21.3901
https://doi.org/10.1007/s10714-016-2031-8
https://doi.org/10.1007/s10714-016-2031-8
http://www.cs.toronto.edu/NA/dverk.f.gz
https://doi.org/10.1103/PhysRevD.22.1882
https://doi.org/10.1103/PhysRevD.22.1882
https://doi.org/10.1143/PTPS.78.1

	INTRODUCTION
	Model of interacting dynamical dark energy
	Cosmological perturbation equations for non-minimally coupled dark energy model
	Perturbations of a energy-momentum tensor
	Covariant form of the DE–DM interaction term
	Cosmological perturbation equations

	Background asymptotic evolution of dark components
	Interaction =cr
	Interaction =de
	Interaction =dm

	Initial and stability conditions for a system of perturbation equations
	Interactions =cr and =de
	Interaction =dm

	Numerical results
	Interaction =cr
	Interaction =de
	Interaction =dm

	CONCLUSIONS
	ACKNOWLEDGEMENTS
	

