Journal of Physical Studies 24(3), Article 3601 [6 pages] (2020)
DOI: https://doi.org/10.30970/jps.24.3601

SHORT RANGE ORDER AND CONFIGURATIONAL ENTROPY OF INTERMEDIATE PHASES IN THE LIQUID STATE

Z. M. Oliinyk1, A. V. Korolyshyn1 , S. I. Mudry1 , I. Z. Koval2 

1Faculty of Physics, Ivan Franko National University of Lviv, 8 Kyrylo and Mefodiy St., Lviv, UA–79005, Ukraine
2Lviv Polytechnic National University, Department of Physical, Analytical and General Chemistry, 12 Bandera St., UA–79013, Lviv, Ukraine
e-mail: andrykorol@gmail.com

Received 19 June 2020; in final form 30 July 2020; accepted 31 July 2020; published online 30 September 2020

The configurational entropy of mixing was calculated on the basis of the experimental diffraction data of melts of intermediate phases of Cu-In, Bi-Te, Fe-Ge, Ni-In and Bi-Tl systems. The entropy determined in such a way is the difference between the entropy of the melt and the one of an ideal gas of the same atoms being a measure of the degree of ordering of the melt. This value is in fact the excess entropy and differs from the classical definition of configurational entropy for crystals, defined as the difference between total entropy and its vibrational contribution. This approach was used to calculate such a configurational contribution to entropy in the case of one-component melts, but we tried to use it to study two-component melts too, replacing them by effective one-component liquids.

Configuration entropy indicates the deviation of the topology of the real atomic distribution from the distribution in the gas of the same atoms, and in the case of binary melts, we have calculated the degree of deviation of the structural state of the melt from the structure of an ideal atomic solution. For a melt with an average atomic distribution, the excess configuration entropy is close to zero, and in the case of significant changes in the atomic distribution during the formation of the melt, it will be different. The transformation of the structure during the melt formation is accompanied by both a change in the interparticle interaction and the topology of the atomic distribution in comparison with the pure components, and these changes will be displayed in the experimental pair correlation function and hence in the configurational entropy of mixing.

The concentration dependence of the excess configurational entropy within the concentration range corresponding to the existence of intermediate phases of the studied systems is characterized by minimal values and increases within concentration intervals in which eutectics and atomic solutions exist, that is the evidence of its correlation with equilibrium diagrams of the studied systems.

Key words: metal melts, configuration entropy, short range order.

Full text


References
  1. S. Mudry, A. Korolyshyn, J. Alloys Compd. 235, 120 (1996);
    Crossref
  2. S. Mudry, A. Korolyshyn, N. Klym, Phys. Chem. Liq. 32, 115 (1996);
    Crossref
  3. S. I. Mudryi, A. V. Korolyshin, Inorg. Mater. 32, 729 (1996).
  4. Z. M. Oliinyk, A. V. Korolyshyn, S. I. Mudry, Phys. Chem Solid State 19, 336 (2018);
    Crossref
  5. Z. M. Oliinyk, A. V. Korolyshyn, S. I. Mudry, Phys.-Chem. Mech. Mater. 55(6), 139 (2019).
  6. A. V. Korolyshyn, Z. M. Olyinyk, S. I. Mudry, Archiv. Mater. Sci. Eng. 100, 5 (2019);
    Crossref
  7. D. M. North, C. N. J. Wagner, J. Appl. Cryst. 2, 149 (1969);
    Crossref
  8. A. Гинье, Рентгенография кристаллов. Теория и практика (Изд-во физ.-мат. л-ры, Москва, 1961).
  9. Л. И. Миркин, Справочник по рентгеноструктурному анализу поликристаллов (Изд-во физ.-мат. л-ры, Москва, 1961).
  10. Н. А. Ватолин, Э. А. Пастухов, Дифракционные исследования строения высокотемпера-турных расплавов (Наука, Москва, 1980).
  11. W. H. Press, S. A. Teukolsky, W. T. Vetterling, B. P. Flannery, The Art of Scientific Computing, Numerical recipes in C (Cambridge University Press, Cambridge, 1998).
  12. S. Takeuchi, Trans. Japan Inst. Metals 21, 543 (1980).
  13. Е. И. Харьков, В. И. Лысов, В. Е. Федоров Физика жидких металлов (Вища школа, Київ, 1979).
  14. V. I. Lysov et al., Ukr. Fiz. Zhurn. 19, 322 (1974).
  15. В. И. Ниженко, Л. И. Флока Поверхностное натяжение жидких металлов и сплавов (Металлургия, Москва, 1981).
  16. T. Massalski Binary Alloy Phase Diagram (Metals Park, OH, ASM, 1990).