Journal of Physical Studies 24(3), Article 3602 [6 pages] (2020)
DOI: https://doi.org/10.30970/jps.24.3602

INFLUENCE OF Ni NANOPARTICLES ON ELECTRICAL CONDUCTIVITY OF Sn95.5Ag3.8Cu0.7

O. Tkach1, Yu. Plevachuk1 , V. Sklyarchuk1 , Y. Kulyk1 , R. Serkiz1 , V. Didukh2

1Ivan Franko National University of Lviv
Kyrylo and Mefodiy St., 8, UA-79005, Lviv, Ukraine
2Independent researcher

Received 14 July 2020; in final form 01 August 2020; accepted 03 August 2020; published online 06 October 2020

The increasing scientific interest in Sn-based nanocomposite alloys with minor additions of oxides, metals and carbon in nanosized form is explained by the possible application of these materials as an alternative to commercial lead-free solders. As pointed out in recent literature reviews, the improved mechanical properties and reinforced microstructure of solder joints using nanocomposite Sn-Ag-Cu (SAC) alloys, compared to those without nanoinclusions, revealed new possibilities for the development of the currently used commercial lead-free solders. The main benefit of the nanosized additions is related to the suppression of the extensive growth of the Cu$_6$Sn$_5$ intermetallic compound (IMC) at the solder/Cu interface towards the solder side. This is achieved due to the spreading of nanoparticles over the IMC's surface, thereby suppressing the growth of Cu$_6$Sn$_5$ on the interface as well as in the bulk solder. In particular, the adsorbed nanoparticles on the IMC layer interface hinder the diffusion of Sn atoms from the bulk solder towards the interface and thereby suppress the IMC growth. Compared to the solid state, there is a limited number of papers dealing with experimental investigations of nanocomposite SAC solders in the liquid state after melting as well as in the semi-solid state. It has been shown that minor metal nanoadditions have an impact on the microstructure of solidified SAC solders, but practically without any significant change of the melting temperatures. The effect of small nanosized (up to 3 wt.\%) nickel impurities on the electrical conductivity of Sn$_{95.5}$Ag$_{3.8}$Cu$_{0.7}$ (SAC387) alloy has been investigated. It has been shown that the electrical conductivity gradually decreases with an increase in the impurity content of Ni. Conductivity, as a structure-sensitive transport characteristic of the liquid state of a substance, is important for modeling the processes of melting and solidification. The conductivity data provide additional information on the influence of admixtures on the structure and physicochemical properties of the metal matrix, which is important for understanding the microstructural transformations in a liquid state. Morphology of the samples was examined using REMMA-102-02 Scanning Electron Microscope-Analyzer (JCS SELMI, Sumy, Ukraine).

Key words: nanoparticles, composite solder, eutectic, intermetallic compound, lead free solder, electrical conductivity

Full text


References
  1. L. Sun, L. Zhang, L. Xu, S.J. Zhong, J. Ma, L. Bao. J. Mater, Sci. Mater. Electron. 27, 7665 (2016);
    Crossref
  2. A. S. M. A. Haseeb, M. M. Arafat, M. R. Johan, Mater. Charact. 64, 27 (2012);
    Crossref
  3. A. Yakymovych et al., J. Mater. Sci. Mater. Electron. 28, 10965 (2017);
    Crossref
  4. T. Fouzder, Q. Q. Li, Y. C. Chan, D. K. Chan, J. Mater. Sci. Mater. Electron. 25, 4012 (2014);
    Crossref
  5. Y. Gu, X. C. Zhao, Y. Li, Y. Liu, Y. Wang, Z. Y. Li, J. Alloys Compd. 627, 39 (2015);
    Crossref
  6. K. Mehrabi, F. Khodabakhshi, E. Zareh, A. Shah\-bazkhan, A. Simchim, J. Alloy Compd. 688, 143 (2016);
    Crossref
  7. A. Roshanghias et al., J. Mater, Sci. Mater. Electron. 23, 1698 (2012);
    Crossref
  8. A. Yakymovych et al., J. Electron. Mater. 45, 6143 (2016);
    Crossref
  9. E. K. Choi, K. Y. Lee, T. S. Oh, J. Phys. Chem.\linebreak Solids 69, 1403 (2008);
    Crossref
  10. D. L. Ma, P. Wu, J. Alloys Compd. 671, 127 (2016);
    Crossref
  11. Y. L. Huang, Z. Y. Xiu, G. H. Wu, Y. H. Tian,\linebreak P. He, J. Mater. Sci. Mater. Electron. 27, 6809 (2016);
    Crossref
  12. X. D. Liu, Y. D. Han, H. Y. Jing, J. Wei, L.Y. Xu, Mater. Sci. Eng. A 562, 25 (2013);
    Crossref
  13. J. Shen, Y. C. Chan, Microelectron. Reliab. 49, 223 (2009);
    Crossref
  14. A. T. Tan, A. W. Tan, F. Yusof, Sci. Technol. Adv. Mater. 16, 033505 (2015);
    Crossref
  15. K. Bukat, M. Kościelski, J. Sitek, M. Jakubowska, A. Młożniak, Solder Surf. Mt. Tech. 23, 150 (2011);
    Crossref
  16. A. Yakymovych, S. Mudry, I. Shtablavyi, H. Ipser, Mater. Chem. Phys. 181, 470 (2016);
    Crossref
  17. S. L. Tay, A. S. M. A. Haseeb, M. R. Johan, Solder. Surf. Mt. Tech. 23, 19 (2011);
    Crossref
  18. A. K. Gain, Y. C. Chan, Intermetallics 29, 48 (2012);
    Crossref
  19. A. Yakymovych, G. Kaptay, A. Roshanghias, H. Flandorfer, H. Ipser, J. Phys. Chem. C 120, 1881 (2016);
    Crossref
  20. X. C. Zhang, J. W. Cheng, B. Zheng, X. C. Zhao, Y. Liu, P. Chen, Mater. Sci. Forum. 815, 8807 (2015);
    Crossref
  21. M. N. Bashir, A. S. M. A. Haseeb, A. M. S. Rahman, M. A. Fazal, C. R. Kao, J. Mater. Sci. 50, 6748 (2015);
    Crossref
  22. S. L. Tay, A. S. M. A. Haseeb, M. R. Johan, P. R. Munroe, M. Z. Quadir, Intermetallics 33, 8 (2013);
    Crossref
  23. V. L. Niranjani, B. S. S. C. Rao, R. Sarkar, S. V. Kamat, J. Alloy Compd. 542, 136 (2012);
    Crossref
  24. Y. Plevachuk, V. Sklyarchuk, Meas. Sci. Technol. 12, 23 (2001);
    Crossref
  25. A. Yakymovych, Yu. Plevachuk, V. Sklyarchuk, B. Sokoliuk, T. Galya, H. Ipser, J. Phase Equilib.\linebreak Diffus. 38, 217 (2017);
    Crossref
  26. Ю. Плевачук, В. Склярчук, А. Якимович, О. Ткач, Вісн. Львів. ун-ту. Сер. фіз. 53, 64 (2017).
  27. S. Mhiaoui, PhD thesis, TU Chemnitz (2007); https://katalog.bibliothek.tu-chemnitz.de/Record/0-1353806235
  28. J. Friedel, Nuovo Cim. 7, 287 (1958);
    Crossref
  29. Yu. Plevachuk, V. Sklyarchuk, A. Yakymovych, G. Gerbeth. J. Non-Cryst. Solids 354, 4443 (2008);
    Crossref