Journal of Physical Studies 24(3), Article 3703 [8 pages] (2020)
DOI: https://doi.org/10.30970/jps.24.3703

INFRARED SPECTROSCOPIC STUDY OF PHASE TRANSITIONS IN NEW FERROELASTOELECTRIC [(CH3)2CHNH3]4Cd3Cl10 CRYSTAL DOPED WITH COPPER

V. Kapustianyk1 , Yu. Chornii1 , Z. Czapla2, O. Czupinski3

1Department of Physics, Ivan Franko National University of Lviv, 50, Dragomanova St., Lviv, UA-79005, Ukraine,
2Institute of Experimental Physics, University of Wrocław, 9, M. Borna ave., Wrocław, 50204, Poland
3Faculty of Chemistry, University of Wrocław, 14, F. Joliot-Curie, Wrocław, 50383, Poland

Received 01 April 2020; in final form 09 July 2020; accepted 12 July 2020; published online 02 October 2020

Infrared spectroscopic investigations of [(CH3)2CHNH3]4Cd3Cl10 crystal doped with copper (IPACCC) have been done in a wide temperature range covering the ferroelastoelectric phase in order to get more information about the nature of the phase transitions. The structure of the doped IPACCC crystal was found to be close to the structure of the initial one (IPACC). The Cu$^{2+}$ ion in the IPACCC crystal statistically replaces Cd$^{2+}$ ion in the anionic complex consisting of three ‟metal-halogen” octahedra with different orientation of their axes relatively to the main crystallographic directions. The phase transitions have been confirmed at $T_1=358$ K, $T_2=293$ K and $T_3=253$ K. These changes were clearly detected by the shifts or jumps of wavenumbers and intensities of modes mostly connected with internal vibration within isopropylammonium cation.

Key words: transition metal, infrared spectroscopy, crystal structure, phase transitions, isomorphous substitution, molecular interactions

Full text


References
  1. B. Staśkiewicz, J. Baran, Z. Czapla, J. Phys. Chem. Solids 74, 1848 (2013);
    Crossref
  2. Ch. E. Costin-Hogan et al., Cryst. Eng. Comm. 10, 1910 (2008);
    Crossref
  3. A. Thorn, R. Willet, B. Twamley, Cryst. Growth Des. 5, 637 (2005);
    Crossref
  4. P. Czarnecki, W. Nawrocik, Z. Pająk, J. Wąsicki, Phys. Rev. B. 49, 1511(R) (1994);
    Crossref
  5. Z. Czapla, S. Dacko, B. Kosturek, Z. Naturforsch. 55A, 891 (2000);
    Crossref
  6. Z. Pająk, P. Czarnecki, B. Szafrańska, H. Małuszyńska, Z. Fojud, Phys. Rev. B 69, 132102 (2004);
    Crossref
  7. Z. Czapla, S. Dacko, B. Kosturek, A. Waśkowska, Phys. Status Solidi B 242, R122 (2005);
    Crossref
  8. Z. Czapla, S. Dacko, U. Krzewska, A. Waśkowska, Solid State Commun. 71, 139 (1989);
    Crossref
  9. L. J. Kirpichnikova, A. Pietraszko, W. Bednarski, S. Waplak, A. U. Sheleg, Crystallogr. Rep. 49, 86 (2004);
    Crossref
  10. Z. Czapla, Yu. Eliyashevskyy, S. Dacko, Ferroelectr. Lett. 33, 1 (2006);
    Crossref
  11. S. Mulla-Osman, D. Michel, G. Völkel, Z. Czapla, Phys. Status Solidi B 219, 9 (2000);
    Crossref
  12. I. Peral, G. Madariaga, A. Pérez-Etxebarria, T. Breczewski, Acta Cryst. B 56, 215 (2000);
    Crossref
  13. U. Krzewska, R. Jakubas, S. Dacko, Z. Czapla, A. Waśkowska, Acta Phys. Pol. A 81, 379 (1992);
    Crossref
  14. R. Jakubas, G. Bator, P. Ciąpała, J. Zaleski, J. Baran, J. Lefebvre, J. Phys. Condens. Matter. 7, 5335 (1995);
    Crossref
  15. A. Waśkowska, T. Lis, U. Krzewska, Z. Czapla, Acta Cryst. C 46, 1768 (1990);
    Crossref
  16. T. Asahi, K. Hasebe, K. Gesi, Acta Cryst. C 46, 2252 (1990);
    Crossref
  17. T. Asahi, K. Hasebe, K. Gesi, Acta Cryst. C 47, 1208 (1991);
    Crossref
  18. A. Gagor, A. Waśkowska, Z. Czapla, S. Dacko, Acta Cryst. B 67, 122 (2011);
    Crossref
  19. B. Staśkiewicz, S. Dacko, Z. Czapla, Curr. Appl. Phys. 12, 413(2012);
    Crossref
  20. J. Przesławski, M. Kos, Z. Czapla, Thermochim. Acta 546, 49(2012);
    Crossref
  21. B. Kundys et al., Phys. Rev. B 81, 224434 (2010);
    Crossref
  22. V. Kapustianyk, V. Rudyk, P. Yonak, B. Kundys, Phys. Stat. Solidi (b) 252, 1778 (2015);
    Crossref
  23. Y. Tian, A. Stroppa, Y. Chai, L. Yan, S. Wang, P. Barone, S. Picozzi, Y. Sun, Sci. Rep. 4, 60(2014);
    Crossref
  24. V. Kapustianyk et al., Sci. Rep. 7, 14109(2017);
    Crossref
  25. B. Sahraoui, R. Czaplicki, A. Klöpperpieper, A. S. Andrushchak, A. V. Kityk, J. Appl. Phys. 107, 113526 (2010); https://doi.org/10.1063/1.3415545.
  26. W. Bi, N. Louvain, N. Mercier, J. Luc, I. Rau, F. Kajzar, B. Sahraoui, Adv. Mater. 20, 1013(2008); https://doi.org/10.1002/adma.200701753.
  27. V. Kapustianyk et al., Phys. Stat. Solidi (b) 204, 877(1997);
    Crossref
  28. V. Kapustianyk, Z. Czapla, V. Rudyk, Yu. Eliyashevskyy, P. Yonak, Ferroelectrics 540, 212 (2019);
    Crossref
  29. Y. Hamada, M. Tsuboi, M. Nakata, M. Tasumi, Chem. Phys. 125, 125 (1988);
    Crossref
  30. I. Chaabane, F. Hlel, K. Guidara, PMC Phys. B 1, 11 (2008);
    Crossref
  31. D. Zeroka, J. O. Jensen, A. C. Samuels, Int. J. Quantum Chem. 72, 109 (1990);
    Crossref
  32. J. R. Durig et al., J. Mol. Struct. 1009, 30 (2012);
    Crossref