Journal of Physical Studies 24(3), Article 3704 [4 pages] (2020)
DOI: https://doi.org/10.30970/jps.24.3704

INFLUENCE OF HYDROGEN ON THE ELECTRICAL PROPERTIES OF n-InSe

V. M. Kaminskii1, Z. D. Kovalyuk1 , M. V. Tovarnitskii1, V. I. Ivanov1 , M. V. Zapolovskyi2

1Frantsevych Institute for Problems of Materials Science of NAS of Ukraine, Chernivtsi Branch,
5, I. Vilde St., UA-58001, Chernivtsi, Ukraine
2Yuriy Fedkovych Chernivtsi National University,
2, Kotsyubynsky St., UA-58012, Chernivtsi, Ukraine

Received 23 January 2020; in final form 06 July 2020; accepted 14 July 2020; published online 03 September 2020

The results of studies of the electrical properties of InSe layered crystals hydrogenated from the gas phase are presented. Theoretical models for the description of the temperature dependences of the mobility and electron concentration of hydrogenated, undoped and annealed InSe crystals are proposed. In order to separately determine the effects of hydrogenation and conventional annealing, the studies of a vacuum heat treated sample under similar conditions were carried out. The electrical characteristics of single crystals were investigated in the temperature range $80\div400$ K. It is established that the electrical conductivity and free-electron concentration of hydrogenated InSe crystals significantly increased, and the electron mobility decreased. The increase in the conductivity and concentration is due to the ionization of the hydrogen atoms. The decrease in the mobility for hydrogenated and annealed InSe is due to the scattering of electrons by the localized hydrogen atoms as well as due to structural changes at annealing. It is shown that the dominant mechanisms of charge-carrier scattering that determine the temperature dependence of mobility are the scattering on homopolar optical phonons and the scattering on ionized impurities. In perfect undoped InSe single crystals, only the scattering on optical phonons occurs in the studied temperature range. The temperature dependence of the electron concentration is analyzed in the framework of the model of impurity conduction. We considered three types of impurity states in the band gap: the deep donor, shallow donor and acceptor. The energy and concentration of the levels were determined. The good coincidence of experimental and theoretical results confirms the validity of the chosen model for our materials.

Key words: indium selenide, hydrogenation, electrical conductivity, mobility, electron concentration.

Full text


References
  1. Y. Zhirko, V. Trachevsky, Z. Kovalyuk, Hydrogen Storage, edated by J. Liu (IntechOpen, 2012); http://doi.org/10.5772/3207
  2. Y. Zhirko, V. Grekhov, N. Skubenko, Z. Kovalyuk, T. Feshak, Advanced Materials for Renewable Hydrogen Production, Storage and Utilization, edited by J. Liu (IntechOpen, 2015); http://doi.org/10.5772/59520
  3. R. T. Srinivasa et al., Nano Lett. 14, 2800 (2014);
    Crossref
  4. Z. D. Kovalyuk, I. V. Mintyanskii, P. I. Savytskii, J. Nano- Electron. Phys. 9, 06013 (2017); https://10.21272/jnep.9(6).06013
  5. A. I. Dmitriev et al., Fiz. Tverd. Tela 51, 2207 (2009); Phys. Solid State 51, 2342 (2009);
    Crossref
  6. A. V. Zaslonkin et al., Neorg. Mater. 42, 1434 (2006); Inorg. Mater. 42, 1308 (2006);
    Crossref
  7. L. M. Kulikov et al., Dop. NAN Ukr. 1, 102 (2006).
  8. S. Shigetomi, T. Ikari, Y. Koga, S. Shigetomi, Phys. Stat. Solidi (a) 86, K69 (1984);
    Crossref
  9. R. C. Fivaz, Ph. Schmid, Optical and Electrical Properties, edited by P. A. Lee, D. Reidel (Publ. Co., Dordrecht, 1976).
  10. Ph. Schmid, Nuovo Cim. B 21, 258 (1974);
    Crossref
  11. В. Л. Бонч-Бруевич, С. Г. Калашников, Физика полупроводников (Наука, Москва, 1990).
  12. A. Segura, B. Mari, J. Martinez-Pastor, A. Chevy, Phys. Rev. B 43, 4953 (1991);
    Crossref
  13. A. Segura, F. Pomer, A. Cantarero, W. Krause, A. Chevy, Phys. Rev. B 29, 5708 (1984);
    Crossref
  14. L. Yu. Harlis, K. E. Glyuhov, T. Ya. Babuka, Uzhhorod Univ. Sci. Herald. Ser. Phys. 42, 35 (2017).
  15. T. Ikari, T.S. Shigetomi, K. Hashimo, Phys. Stat. Solidi (b), 111, 477 (1982);
    Crossref
  16. A. Segura, K. Wiinstel A. Chevy, Appl. Phys. A 31, 139 (1983);
    Crossref
  17. S. Shigetomi, T. Ikari, Phys. Stat. Soildi (b), 236, 135 (2003);
    Crossref
  18. A. V. Zaslonkin, Z. D. Kovalyuk, I. V. Mintyanskii, P. I. Savitskii, Semicond. Phys. Quant. Electron. Optoelectron. 11, 54 (2008);
    Crossref
  19. M. Stavola, Acta Phys. Pol. A 82, 585 (1992).
  20. P. C Srivastava, U. P. Singh, Bull. Mater. Sci. 19, 51 (1996);
    Crossref