Journal of Physical Studies 24(3), Article 3902 [20 pages] (2020)
DOI: https://doi.org/10.30970/jps.24.3902

NEW APPROACH IN THE THEORY OF STELLAR EQUILIBRIUM WITH AXIAL ROTATION

M. V. Vavrukh , N. L. Tyshko , D. V. Dzikovskyi 

Ivan Franko National University of Lviv, Department for Astrophysics,
8, Kyrylo and Methodiy St., Lviv, UA–79005, Ukraine

Received 06 May 2020; in final form 23 May 2020; accepted 27 May 2020; published online 22 September 2020

The study proposes a new method for the calculation of the equilibrium configuration of polytropes with rigid-body axial rotation. Self-consistency is based on the simultaneous use of differential and integral forms of the mechanical equilibrium equation and a new variant of the perturbation theory, which is relative to the rotation influence. The solutions are shown in the form of expansions for the Legendre polynomials and the functions of radial coordinate. The integral form of the equilibrium equation allows us to correctly define the set of the integration constants (the expansion coefficients, which depend on the angular velocity). The geometrical parameters of the stellar surface as well as the mass, volume and the moment of inertia were calculated as the functions of the angular velocity at fixed values of the polytropic index $n=0; 1.0; 1.5; 2.0; 2.5; 3.0$. A comparison with the results of other authors was performed.

Key words: polytropic stars, heterogeneous ellipsoids, axial rotation, mechanical equilibrium equation, stability of stars

Full text


References
  1. H. J. Lane, Am. J. Sci. 50, 57 (1870);
    Crossref
  2. R. Emden, Gaskugeln: Anwendungen der mechanischen Wärmetheorie auf kosmologische und meteorologische Probleme (Teubner, Leipzig, Berlin, 1907).
  3. R. H. Fowler, Mon. Not. Roy. Astron. Soc. 91, 63 (1930);
    Crossref
  4. A. S. Eddington, The Internal Constitution of the Stars (Cambridge University Press, Cambridge, 1926);
    Crossref
  5. S. Chandrasekhar, Astrophys. J. 74, 81 (1931);
    Crossref
  6. S. Chandrasekhar, Ellipsoidal Figures of Equilibrium (Yale University Press, New Haven, 1969).
  7. E. A. Milne, Mon. Not. Roy. Astron. Soc. 83, 118 (1923);
    Crossref
  8. S. Chandrasekhar, E. A. Milne, Mon. Not. Roy. Astron. Soc. 93, 390 (1933);
    Crossref
  9. Z. Kopal, Z. Astrophys. 14, 135 (1937);
    Crossref
  10. R. A. James, Astrophys. J. 140, 552 (1964);
    Crossref
  11. J. J. Monaghan, I. W. Roxburgh, Mon. Not. Roy. Astron. Soc. 131, 13 (1965);
    Crossref
  12. R. Caimmi, Astrophys. Space Sci. 71, 415 (1980);
    Crossref
  13. D. Kong, K. Zhang, G. Schubert, Mon. Not. Roy. Astron. Soc. 448, 456 (2015);
    Crossref
  14. J. Knopik, P. Mach, A. Odrzywołek, Mon. Not. Roy. Astron. Soc. 467, 4965 (2017);
    Crossref
  15. M. V. Vavrukh, S. V. Smerechynskyi, N. L. Tyshko, J. Phys. Stud. 14, 4901 (2010);
    Crossref
  16. M. V. Vavrukh, N. L. Tyshko, D. V. Dzikovskyi, O. M. Stelmakh, Math. Model. Comput. 6, 153 (2019);
    Crossref
  17. S. Chandrasekhar, An Introduction to the Study of Stellar Structure (University of Chicago Press, Chicago, 1939).
  18. S. L. Shapiro, S. A. Teukolsky, Black Holes, White Dwarfs and Neutron Stars (Ithaca, New York, Cornell University, 1983); http://doi.org/10.1002/9783527617661
  19. M. Abramowitz, I. A. Stegun, Handbook of Mathematical Functions With Formulas, Graphs, and Mathematical Tables (Government Printing Office Washington, 1972).
  20. R. A. Lyttleton, The Stability of Rotating Liquid Masses (Cambridge University Press, Cambridge, 1953).