Journal of Physical Studies 24(3), Article 3905 [8 pages] (2020)
DOI: https://doi.org/10.30970/jps.24.3905

COMPARISON OF SPECTRAL MEASUREMENTS OF MAGNETIC FIELDS IN A SUNSPOT USING LINES WITH DIFFERENT LANDE FACTORS

V. G. Lozitsky1 , S. М. Osipov2 , М. І. Stodilka3 

1Astronomical Observatory of the Taras Shevchenko National University of Kyiv, Kyiv, Ukraine
2Main Astronomical Observatory of National Academy of Sciences, Kyiv, Ukraine
3Astronomical Observatory of Ivan Franko National University of Lviv, Lviv, Ukraine
e-mail: lozitsky_v@ukr.net, osipov@mao.kiev.ua, m.stodilka@gmail.com

Received 02 May 2020; accepted 01 July 2020; published online 16 October 2020

We analyze the spectral observations of a sunspot in six metal lines near Fe I 5434.5 Å, which have effective Lande factors $g_\text{eff}$ from $-0.014$ to 2.14. The observations were made on August 25, 2015 on the ATsU-5 telescope of GAO NAS of Ukraine, using a circular polarization analyzer and spectra registration with the SBIG ST-8300 CCD camera. The following line parameters are compared: the observed splitting of $I\pm V$ profiles, the width and depth of the Stokes $I$ profiles. Significant differences of the measured magnetic field strengths $B_\text{obs}$ were found in separate places of the spot and by lines with different $g_\text{eff}$ values. The Fe I 5434.5 Å line ($g_\text{eff}=-0.014$) shows a measurable splitting in some locations of the sunspot, which corresponds to the magnetic field $B_\text{obs}≈20$ kG. Comparison of the widths and depths of the line profiles revealed two special places in the sunspot, where the Fe I 5434.5 Å line was expanded additionally by $≈15-35$\

Key words: Sun, solar activity, sunspots, spectral analysis, the Zeeman effect, magnetic fields, profiles of spectral lines, superstrong fields

Full text


References
  1. G. E. Hale, F. Ellerman, S. B. Nicholson, A. H. Joy, Astrophys. J. 49, 153 (1919);
    Crossref
  2. N. I. Lozitska et al., Adv. Space Res. 55, 897 (2015);
    Crossref
  3. B. Ruiz Cobo, J. C. del Toro Iniesta, Astrophys. J. 398, 375 (1992);
    Crossref
  4. V. G. Lozitsky, Adv. Space Res. 55, 958 (2015);
    Crossref
  5. W. Livingston, J. W. Harvey, O. V. Malanushenko, Solar Phys. 239, 41 (2006);
    Crossref
  6. Y. Wang et al., Res. Not. Amer. Astron. Soc. 2, No.1, 8 (2018);
    Crossref
  7. V. G. Lozitsky, V. B. Yurchyshyn, K. Ahn, H. Wang, N. I. Lozitska, Odessa Astron. Publ. 30, 152 (2018);
    Crossref
  8. M. Van Noort, A. Lagg, S. K. Tiwari, S. K. Solanki, Astron. Astrophys. 557, A24 (2013);
    Crossref
  9. V. G. Lozitsky, Adv. Space Res. 57, 398 (2016);
    Crossref
  10. V. G. Lozitsky, Adv. Space Res. 59, 1416 (2017);
    Crossref
  11. S. N. Osipov, Kinem. Phys. Celest. Bodies 31, 261 (2015);
    Crossref
  12. V. I. Skomorovsky, Issled. Geomagn. Aeronom. i Fiz. Soln. 26, 220 (1974).
  13. V. Lozitsky, S. Osipov, Bull. Taras Shevchenko Natl. Univ. Kyiv 55, 34 (2017);
  14. E. N. Zemanek, A. P. Stefanov, Bull. Kyiv Univ. Astron. 18, 20 (1976).
  15. C. E. Moore, Contrib. Princeton Univ. Observ. 20, 1 (1945).
  16. V. G. Lozitsky, Kinem. Phys. Celest. Bodies 14, 401 (1998).
  17. J. Trujillo Bueno, N. Shchukina, A. Asensio Ramos, Nature 404, 326 (2004);
    Crossref
  18. A. A. Solov’ev, Solar Phys. 286, 441 (2013);
    Crossref
  19. W. Unno, Publs. Astron. Soc. Jpn. 8, 108 (1956).
  20. V. G. Lozitsky, J. Phys. Stud. 13, 2903 (2009);
    Crossref
  21. A. B. Severny, Astron. Zh. 34, 684 (1957).
  22. M. I. Stodilka, Kinem. Fiz. Nebesn. Tel 19, 334 (2003).
  23. V. G. Lozitsky, M. I. Stodilka, J. Phys. Stud. 23, 4902 (2019);
    Crossref