Journal of Physical Studies 24(4), Article 4701 [8 pages] (2020)
DOI: https://doi.org/10.30970/jps.24.4701

MODELING OF IDEALITY FACTOR VALUE IN n+pp+-Si STRUCTURE

O. Ya. Olikh , O. V. Zavhorodnii

Taras Shevchenko National University of Kyiv,
64/13, Volodymyrska St., Kyiv, UA-01601, Ukraine
e-mail: olikh@univ.kiev.ua

Received 25 August 2020; in final form 19 October 2020; accepted 22 October 2020; published online 01 December 2020

This paper presents the results of computer simulation of the ideality factor of silicon $n^+-p-p^+$ structure with iron contamination. The Solar Cells Capacitance Simulator (SCAPS) was the tool used for numerical simulation of these devices. The iron concentration range of $10^{10}-10^{13}$ cm$^{-3}$, the acceptor doping level range of $10^{15}-10^{17}$ cm$^{-3}$, the temperature range of $290-340$ K, and the base thickness range of $150-240$ $μ$m were used in the investigation. The double diode model was used to extract the ideality factor. The following cases were considered: (i) uniformly distributed lone interstitial iron atoms; (ii) coexistence of non-uniformly distributed $\mathrm{Fe}_i$ and $\mathrm{Fe}_i\mathrm{B}_s$. It has been shown that the ideality factor value is determined by a hole occurring on the $\mathrm{Fe}_i$ level, a trap location, and an intrinsic recombination contribution. The increase in the base thickness leads to a decrease in $n$ value. The sign of change in the ideality factor after $\mathrm{Fe}_i\mathrm{B}_s$ dissociation depends on temperature, doping level, and iron concentration.

Key words: ideality factor, silicon, $n^+$–$p$–$p^+$ structure, SCAPS, iron concentration

Full text


References
  1. K. Ishaque, Z. Salam, H. Taheri, Sol. Energy Mater. Sol. Cells 95, 586 (2011);
    Crossref
  2. A. J. Bühler, A. Krenzinger, Prog. Photovoltaics Res. Appl. 21, 884 (2013);
    Crossref
  3. O. Breitenstein, Opto-Electron. Rev. 21, 259 (2013);
    Crossref
  4. O. Olikh, Superlattices Microstruct. 117, 173 (2018);
    Crossref
  5. J. Beier, B. Voss, in Conference Record of the Twenty Third IEEE Photovoltaic Specialists Conference (1993), p. 321;
    Crossref
  6. K. McIntosh, P. Altermatt, G. Heiser, in 16th European Photovoltaic Solar Energy Conference: Proceedings of the International Conference and Exhibition (Glasgow, 2000), p. 250.
  7. A. Kaminski et al., in Conference Record of the Twenty Fifth IEEE Photovoltaic Specialists Conference (1996), p. 573;
    Crossref
  8. Z. Hameiri, K. McIntosh, G. Xu, Sol. Energy Mater. Sol. Cells 117, 251 (2013);
    Crossref
  9. A. S. H. van der Heide, A. Schonecker, J. H. Bultman, W. C. Sinke, Prog. Photovoltaics Res. Appl. 13, 3 (2005);
    Crossref
  10. L. Duan et al., IEEE J. Photovoltaics 8, 1701 (2018);
    Crossref
  11. O. Olikh, Superlattices Microstruct. 136, 106309 (2019);
    Crossref
  12. A. V. Sachenko et al., Tech. Phys. Lett. 44, 873 (2018);
    Crossref
  13. J. Schmidt, Prog. Photovoltaics Res. Appl. 13, 325 (2005);
    Crossref
  14. W. Wijaranakula, J. Electrochem. Soc. 140, 275 (1993);
    Crossref
  15. E. Hu et al., Renew. Energy 77, 442 (2015);
    Crossref
  16. A. Hamache, N. Sengouga, A. Meftah, M. Henini, Radiat. Phys. Chem. 123, 103 (2016);
    Crossref
  17. G. Azzouzi, W. Tazibt, Energy Procedia 41, 40 (2013);
    Crossref
  18. R. Pässler, Phys. Rev. B 66, 085201 (2002);
    Crossref
  19. D. Yan, A. Cuevas, J. Appl. Phys. 116, 194505 (2014);
    Crossref
  20. M. A. Green, J. Appl. Phys. 67, 2944 (1990);
    Crossref
  21. W. O'Mara, R. Herring, L. Hant, Handbook of Semiconductor Silicon Technology (Noyes Publications, New Jersey, 1990).
  22. R. Couderc, M. Amara, M. Lemiti, J. Appl. Phys. 115, 093705 (2014);
    Crossref
  23. D. Klaassen, Solid-State Electron. 35, 953 (1992);
    Crossref
  24. R. Hull, Properties of Crystalline Silicon (Institution of Engineering and Technology, London, 1999).
  25. H. T. Nguyen, S. C. Baker-Finch, D. Macdonald, Appl. Phys. Lett. 104, 112105 (2014);
    Crossref
  26. P. P. Altermatt, J. Schmidt, G. Heiser, A. G. Aberle, J. Appl. Phys. 82, 4938 (1997);
    Crossref
  27. S. Rein, S. W. Glunz, J. Appl. Phys. 98, 113711 (2005);
    Crossref
  28. J. D. Murphy, K. Bothe, M. Olmo, V. V. Voronkov, R. J. Falster, J. Appl. Phys. 110, 053713 (2011);
    Crossref
  29. H. Kohno, H. Hieslmair, A. A. Istratov, E. R. Weber, Appl. Phys. Lett. 76, 2734 (2000);
    Crossref
  30. F. E. Rougieux, C. Sun, D. Macdonald, Sol. Energy Mater. Sol. Cells 187, 263 (2018);
    Crossref
  31. B. B. Paudyal, K. R. McIntosh, D. H. Macdonald, in 34th IEEE Photovoltaic Specialists Conference (PVSC) (2009), p. 1588.
  32. A. A. Istratov, H. Hieslmair, E. Weber, Appl. Phys. A Mater. Sci. Proc. 69, 13 (1999);
    Crossref
  33. M. Burgelman, P. Nollet, S. Degrave, Thin Solid Films 361–362, 527 (2000);
    Crossref
  34. K. Decock, S. Khelifi, M. Burgelman, Thin Solid Films 519, 7481 (2011);
    Crossref
  35. M. Cappelletti, G. Casas, A. Cédola, E. Peltzer y Blancá, B. M. Soucase, Superlattices Microstruct. 123, 338 (2018);
    Crossref
  36. M. Mostefaoui, H. Mazari, S. Khelifi, A. Bouraiou, R. Dabou, Energy Procedia 74, 736 (2015);
    Crossref
  37. C.-H. Huang, W.-J. Chuang, Vacuum 118, 32 (2015);
    Crossref
  38. F. Azri, A. Meftah, N. Sengouga, A. Meftah, Solar Energy 181, 372 (2019);
    Crossref
  39. B. Zhao, J. Zhou, Y. Chen, Physica B Cond. Mat. 405, 3834 (2010);
    Crossref
  40. K. Yu, J. Liang, B. Qu, X. Chen, H. Wang, Energy Convers. Manag. 150, 742 (2017);
    Crossref