Journal of Physical Studies 24(4), Article 4703 [4 pages] (2020)
DOI: https://doi.org/10.30970/jps.24.4703

ENERGY BAND STRUCTURE OF LaF3:Sm AND LaF3:Pm CRYSTALS

V. O. Karnaushenko{1}, Ya. M. Chornodolskyy{1} , V. V. Vistovskyy{1} , S. V. Syrotyuk{2} , A. S. Voloshinovskii{1} 

{1}Ivan Franko National University of Lviv, 8, Kyrylo & Mefodiy St., Lviv, UA–79005, Ukraine,
{2}Lviv Polytechnic National University, 12, S. Bandera St., Lviv, UA–79013, Ukraine

Received 09 September 2020; accepted 11 November 2020; published online 14 December 2020

The papers presents the results of the theoretical calculations of the partial and total density of states of LaF$_{3}$:Sm and LaF$_{3}$:Pm crystals. We analyze the positions of 4$f$ and 5$d$ energy states of activator ions in the energy structure of the host material. We calculated and described electronic energy band structures of the above mentioned crystals. We made a quantitative and qualitative comparison between the energy structure of LaF$_{3}$:Sm and LaF$_{3}$:Pm crystals.

Key words: energy band structure, partial density of states, total density of states, scintillators, lanthanides

Full text


References
  1. R. Kumar Sharma, A.-V. Mudring, P. Ghosh, J. Lumin. 189, 44 (2017);
    Crossref
  2. Hoang Manh Ha, Tran Thi Quynh Hoa, Le Van Vu, Nguyen Ngoc Long, J. Mater. Sci.: Mater. Electron. 28, 884 (2017);
    Crossref
  3. R. M. Macfarlane, R. M. Shelby, Phys. Lett. A 116, 299 (1986);
    Crossref
  4. M. D. Shinn et al., IEEE J. Quantum Electron. 24, 1100 (1988);
    Crossref
  5. P. Dorenbos, J. Lumin. 135, 93 (2013);
    Crossref
  6. G. H. Dieke, H. M. Crosswhite, Appl. Opt. 2, 675 (1963);
    Crossref
  7. K. Persson, https://materialsproject.org/materials/mp-905/ (2014);
    Crossref
  8. X. Gonze, Comp. Phys. Commun. 248, 107042 (2020);
    Crossref
  9. M. Topsakal, R. M. Wentzcovitch, Comput. Mater. Sci. 95, 263 (2014);
    Crossref