Journal of Physical Studies 24(4), Article 4705 [7 pages] (2020)
DOI: https://doi.org/10.30970/jps.24.4705

HYDROGENATION PROPERTIES OF Gd1-xTixNi (0<x<1)

K. Kluziak{1}, V. Pavlyuk{1,2} 

{1}Institute of Chemistry, Jan Długosz University in Częstochowa,
13/15, Armii Krajowej al., Częstochowa, 42-200, Poland,
{2}Department for Inorganic Chemistry, Ivan Franko National University of Lviv,
6, Kyrylo & Mefodiy St., Lviv, UA–79005, Ukraine

Received 27 July 2020; in final form 15 November 2020; accepted 20 November 2020; published online 11 December 2020

Rare-earth based alloys are the most popular combinations for creating electrode materials for nickel-metal-hydride (NiMH) batteries. This paper presents the results of electrochemical hydrogenation of $AB$ type alloys Gd$ _{1-x} $Ti$ _{x} $Ni $(0<x<1)$. Good hydrogen storage properties of rare-earth metals are known, thanks to the insertion of the third component in the form of titanium the kinetics of hydrogen sorption/desorption have been improved and corrosion resistance has been increased. The synthesized of Gd$ _{1-x} $Ti$ _{x}$Ni $(0<x<1)$ alloys were studied by various experimental techniques, such as XRD, SEM, EPMA, gas and electrochemical hydrogenations. The insertion of Ti had a significant impact on improving the stability of charge/discharge cycles, corrosion protection, and reducing production costs by reducing the amount of rare earth metals. As an element capable of absorbing hydrogen titanium tends to form a passive oxide in 6M KOH electrolyte, which prevents corrosion of the anode.

Key words: alloys, electrochemical hydrogenation, hydrides, NiMH batteries, electrode materials, corrosion

Full text


References
  1. Y. Zhang, Y. Li, H. Shang, Z. Yuan, T. Yang, S. Guo, J. Solid. State Electrochem. 21, 1015 (2017);
    Crossref
  2. H. S. Kim et al., Metals Mater. Int. 14, 497 (2008);
    Crossref
  3. S. M. Lee, H. Lee, J. H. Kim, P. S. Lee, J. Y. Lee, Metals Mater. Int., 7, 181 (2001);
    Crossref
  4. I. Y. Zavalii, I. V. Saldan, Mater. Sci. 38, 526 (2002);
    Crossref
  5. S. S. Han, N. H. Goo, W. T. Jeong, K. S. Lee, J. Power Sources 92, 157 (2001);
    Crossref
  6. B. Hosni, C. Khaldi, O. ElKedim, N. Fenineche, J. Lamloumi, Int. J. Hydrog. Energy 42, 1420 (2017);
    Crossref
  7. K. Hong, J. Alloys Compd. 321, 307 (2001);
    Crossref
  8. M. Tliha et al., J. Solid State Electrochem. 18, 577 (2014);
    Crossref
  9. K. Young, J. Nei, Materials 6, 4574 (2013);
    Crossref
  10. F. Feng, M. Geng, D. O. Northwood, Int. J. Hydrog. Energy 26, 725 (2001);
    Crossref
  11. T. Nobuki, J.-C. Crivello, F. Cuevas, J.-M. Joubert, Int. J. Hydrog. Energy 44, 10770 (2019);
    Crossref
  12. F. Cheng, J. Liang, Z. Tao, J. Chen, Adv. Mater. 23, 1695 (2011);
    Crossref
  13. F. Feng, J. Han, M. Geng, D. O. Northwood, J. Electroanal. Chem. 487, 111 (2000);
    Crossref
  14. K. Shinyama et al., Res. Chem. Intermed. 32, 419 (2006);
    Crossref
  15. F. Cuevas, J-M. Joubert, M. Latroche, A. Percheron-Guégan, Appl. Phys. A72, 225 (2001);
    Crossref