Journal of Physical Studies 24(4), Article 4709 [5 pages] (2020)
DOI: https://doi.org/10.30970/jps.24.4709

POLYSTYRENE COMPOSITES WITH LOADED LaF3 NANOPARTICLES FOR REGISTRATION OF IONIZING RADIATION

M. Dendebera1 , A. Zhyshkovych1 , T. S. Malyi1 , L. S. Demkiv1 , N. Gloskovska1 , T. M. Demkiv1 , V. V. Vistovskyy1 , A. V. Gektin2 , A. S. Voloshinovskii1 

1Ivan Franko National University of Lviv,
8, Kyrylo & Mefodiy St., Lviv, UA–79005, Ukraine,
2Institute for Scintillation Materials, National Academy of Sciences of Ukraine,
60, Nauky Ave., Kharkiv, UA–61001, Ukraine
e-mail: tmdemkiv@gmail.com

Received 12 October 2020; in final form 14 December 2020; accepted 14 December 2020; published online 23 December 2020

Film polymer composite scintillators based on scintillation polystyrene with n-terphenyl and POPOP activators and loaded LaF$_3$ nanoparticles have been developed for the registration of ionizing radiation. LaF$_3$ nanoparticles were obtained through precipitation involving ion substitution from LaCl$_3$ water and water-alcohol solution with the addition of NH$_4$F solution. The spectral and kinetic properties of polymer nanocomposites under X-ray irradiation have been studied. It was found that the efficiency of the ionizing radiation detection for a polystyrene composite with loaded non-luminescence LaF$_3$ nanoparticles increases by an order of magnitude compared to the efficiency of a polystyrene scintillator without nanoparticles, maintaining the spectral composition of the polystyrene scintillator radiation and its speed was 3 ns. It is proposed that the main mechanism of the scintillation generation is the excitation of polystyrene matrix by electrons that escape from the nanoparticle by the mechanism of photoeffect under the influence of ionizing radiation.

Key words: luminescence of nanoparticles, polystyrene nanocomposite, loaded LaF$_3$ nanoparticles, spectral and kinetic properties

Full text


References
  1. T. Hajagos, C. Liu, N. J. Cherepy, Q. Pei, Rev. Adv. Mater. 30, 1706956 (2018);
    Crossref
  2. B. L. Rupert, N. J. Cherepy, B. W. Sturm, R. D. Sanner, S. A. Payne, EPL 97, 22002 (2012);
    Crossref
  3. C. Liu, T. Hajagos, D. Kishpaugh, Y. Jin, W. Hu, Q. Chen, Q. Pei, Adv. Funct. Mater. 25, 4607 (2015);
    Crossref
  4. A. C. Balazs, T. Emrick, T. P. Russell, Science 314, 1107 (2006);
    Crossref
  5. T. Demkiv et al., Visn. Lviv Univ. Ser. Phys. 51, 52 (2016).
  6. T. M. Demkiv, O. O. Halyatkin, V. V. Vistovskyy, A. V. Gektin, A. S. Voloshinovskii, Nucl. Instrum. Methods Phys. Res. A 810, 1 (2016);
    Crossref
  7. M.Chylii et al., J. Phys. Stud. 22,1301 (2018);
    Crossref
  8. T. M. Demkiv et al., Nucl. Instrum. Methods Phys. Res. A 908, 309 (2018);
    Crossref
  9. T. Demkiv et al., Visn. Lviv Univ. Ser. Phys. 54, 74 (2017).
  10. T. M. Demkiv, O. O. Halyatkin, V. V. Vistovskyy, A. V. Gektin, A. S. Voloshinovskii, J. Appl. Phys. 120, 144301 (2016);
    Crossref
  11. T. M. Demkiv et al., Nucl. Instrum. Methods Phys. Res. A 847, 47 (2017);
    Crossref
  12. V. A. Bumazhnov et al., preprint IHEP 98-14 (Protvino, IHRP, 1998); http://web.ihep.su/library/pubs/prep1998/ps/98-14.pdf
  13. M. P. Seah, W. A. Dench, Surf. Interface Anal. 1, 2 (1979);
    Crossref