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The present paper presents an investigation of the current states in a double barrier tunnel
Josephson junction. The Josephson supercurrent in tunnel multilayered structures has signi�cant
features related to the phenomenon of quantum resonant tunneling. The value of the supercurrent
is very sensitive to the distance between the barriers (thickness of interior superconductor layer).
This gives a possibility to fabricate the tunnel Josephson junctions with hight values of critical
supercurrent. In this paper the relationship for the thickness of an interior superconductor layer
has been found for which the double-barrier becomes fully transparent. We also investigated the
current�phase relation for the double barrier tunnel Josephson junction, derived the equation for
the critical value of a supercurrent and calculated the skewness in the current�phase relation for
di�erent values of the transparency of the junction.
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I. INTRODUCTION

Josephson junctions (JJ) are very attractive objects
for investigation in modern physics of condensed matter.
They are interesting from a fundamental perspective as
well as for applications in technologies. There are many
branches of theoretical investigations of JJ. They include
the phenomenon of the spontaneous symmetry breaki-
ng, the dissipative behavior of supercurrent, the expulsi-
on of the magnetic �ux, and so forth [1]. In the recent
years, we have seen a lot of articles related to topological
superconductivity. The topological Josephson junction
reveals important information about this phenomenon
[2]. In technologies, there are many devices and high-
sensitivity detectors based on the JJ. They include
superconducting quantum interference devices (SQUI-
Ds), rapid single �ux quantum (RSFQ) digital devi-
ces, superconducting qubits. JJ also have applications
in voltage metrology.

Typical JJ have the following con�gurations: SIS, SNS,
SFS (here S is the superconductor, I is the insulator, N
is a normal metal, F is a ferromagnet). In recent years, it
has become possible to create multilayered (also known
as �sandwich�) Josephson structures of the SINIS and
SISIS-type [3]. The Josephson e�ect in tunnel multi-
layered structures has signi�cant features that are related
to the phenomenon of quantum resonant tunneling. The
value of a Josephson supercurrent is dependent on the
transparency of the junction. For the multilayered juncti-
on there is a possibility of controlling the transparency
by tuning the spacing between layers. Hence, we obtain
a possibility to fabricate the tunnel JJ with hight values
of critical supercurrent.

In the present paper, we carry out a microscopic
investigation of the resonant tunneling e�ects in a
double-barrier Josephson SISIS-junction. We investi-
gate the relationship between the critical current, the

coherent phase di�erence and the transparency of the
junction. Also, we calculate the skewness in the current�
phase relation for the SISIS junction.

II. MODEL

Let us consider a double barrier tunnel junction with
geometry SISIS (S is a superconductor, I is an insulator).
In this paper, we will investigate the so-called point
junction. From the microscopic point of view, for this
type of junction electrons incident on the barrier at the
right angle (i. e. the electron's momentum p ∼= pz). The
geometry of the tunnel junction is shown on Fig 1.
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Fig. 1. Model of the symmetric SISIS tunnel junction and
corresponding potential
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The insulators are modeled by a delta-Dirac potential
barriers

U(z) = α

[
δ

(
z − d

2

)
+ δ

(
z +

d

2

)]
. (1)

Here δ(z) is the Dirac delta function.
Typical insulators used for the tunnel junctions (e.g.,

Al2O3) have the thickness of about 10 − 20 nm. The
barrier height is about 1 − 5 eV. Hence, the constant α
for the delta-Dirac potential (1) is about (1− 10)× 10−8

eV·m.
The solution of the Schr�odinger equation with potenti-

al (1) gives the next relation for the transparency of the
double-barrier junction:

D =
κ4

κ4 +
(
κ cos(pzd) + 1

2 sin(pzd)
)2 , (2)

where

κ =
pz

2mα
=

√
E√

2mα
.

Here E is the energy of incident on the barrier electron.
According to the superconductivity theory, the

characteristic momenta that contribute to the values of
physical quantities are close to the Fermi momentum pF.
So, we may assume that parameter κ is approximately
equal

κ =
pF

2mα
=

√
EF√

2mα
.

The Fermi energy for metals is about 2 − 10 eV, then
parameter κ takes on the values within the interval (5−
30)× 10−3.
We note that in the case

κ cos(pzd) +
1

2
sin(pzd) = 0 (3)

the double-barrier becomes fully transparent, even
though the partial transparency of each barrier can
be small! It is the e�ect of the resonant tunneling
of electrons. This phenomenon is similar to the enli-
ghtenment of optics.
The current states in a SISIS junction can be investi-

gated using equations of the microscopic theory of
superconductivity. In the paper [4], using the approach
of the quasiclassical equation for Green's function, an
expression for the supercurrent through a double-barrier
Josephson junction was obtained

j = j0
D sinϕ√

1−D sin2 ϕ

2

tanh

∆

√
1−D sin2 ϕ

2

2T
, (4)

j0 =
π

4
evFNF∆.

Here NF =
3

4

n

EF
is the density of states at the Fermi

surface, D is the transmission coe�cient for the double

delta-function barrier (2), ∆ is the gap in the spectrum
of excitations in a superconductor, T is the temperature,
ϕ is the phase di�erence between the superconductors.
The analysis of the properties of the current (4) will be
provided in the next section.

III. RESULTS

Let us consider some features of the Josephson current
in a double-barrier junction, which is described by
equation (4) with transparency (2). We calculate the
current at the temperature T = 2.5 K for a tunnel juncti-
on on the basis of niobium, for which the energy gap
∆ ' 3 meV, critical temperature Tc ' 9.5 K, densi-
ty of states NF ' 5.56 × 1028 m−3, and Fermi velocity
vF ' 1.37× 106 ms−1. For this case ∆/T ' 14.2 and

j0 =
π

4
evFNF∆ ' 4.59 µA/m2.

The supercurrent through the SISIS junction is di�erent
from the current in the case a SIS-junction. It has a non-
monotonous dependence on the distance between barri-
ers, with the presence of resonance peaks (see Figs. 2, 3).
This is lined to the resonant tunneling of Cooper pairs
through the double-barrier structure.
Using equation (3), we can calculate the values of

a barrier thickness that correspond to resonance peaks
of the supercurrent. When the thickness of the interior
superconductor layer satis�es the condition

tan(pFdmax) = −2κ, (5)

then the current reaches the maximum.
For the case κ = 0.01, equation (5) gives the following

values

pFdmax = 3.12, 6.26, 9.40, . . . .

Another feature of the supercurrent in a double
Josephson junction (4) is that it exhibits a non-sinusoidal
current�phase relation. The current�phase relation for a
SISIS-junction at di�erent values of the transparency D
is shown in Fig. 4.
The value of the critical current jmax can be found

as an extremum of the supercurrent (4) with respect
to the phase di�erence ϕ. The critical value of the
superconducting phase di�erence satis�es the equation

ϕmax = arccos

[
1− 2

D

(
1− x2

)]
,

where x is the root of the transcendental equation

sinh

(
∆

T
x

)
=

∆

T

x2
(
1− x2

) (
1−D − x2

)
1−D − x4

. (6)

Let us compute the critical current at T = 2.5 K for
a junction based on niobium with the energy gap ∆ ' 3
meV, critical temperature Tc ' 9.5 K, density of states
NF ' 5.56 × 1028 m−3, and the Fermi velocity vF '
1.37× 106 ms−1. For this case ∆/T ' 14.2 and

j0 =
π

4
evFNF∆ ' 4.59 µA/m2.
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Fig. 2. Dependence of the current density on the distance between the barriers (thickness of interior superconductor layer).
The current density is normalized to the value j0 = π

4
evFNF∆

κ=0.01 κ=0.02 κ=0.03

6.22 6.23 6.24 6.25 6.26 6.27

0.0

0.2

0.4

0.6

0.8

1.0

pFd

j/
j 0

Fig. 3. Dependence of the current density on the distance between the barriers at the di�erent values κ. The current density
is normalized to the value j0 = π
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Fig. 4. Current�phase relation curves for a SISIS-junction at di�erent values of the transparency D. The current density is
normalized to the value j0 = π
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For the case of the perfect transparency, D = 1, the
root x ' 0.23 and ϕmax = 2.67, jmax ' 1.94j0 '
8.9 µA/m2.
For D = 0.5, we obtained x ' 0.84, ϕmax = 1.75,

jmax ' 0.59j0 ' 2.7 µA/m2.
In Ref. [5], to identify the behavior of Josephson juncti-

ons, the skewness S in the current�phase relation has
been de�ned as follows

S =
2

π
ϕmax − 1.

In the current�phase relation skewness de�nes the
degree of the deviation of the Josephson supercurrent
from a sinusoidal form.
In the current�phase relation skewness for the double-

barrier tunnel junction is:

S =
2

π
arccos

[
1− 2

D

(
1− x2

)]
− 1,

where x is a root of the equation (6).
The skewness is dependent on the transparency of the

junction as well as on the ratio ∆/T . For the juncti-
on considered in the present paper, we get the following
values

SD=0.5 = 0.62, SD=1 = −0.79.

Skewness can be measured experimentally by a phase-
sensitive SQUID interferometry technique [6].

IV. CONCLUSIONS

In this work, we considered current states in a double
barrier tunnel Josephson junction with geometry SISIS.
The Josephson supercurrent in this junction has signi-
�cant features that are related to the phenomenon of
quantum resonant tunneling. Particulary, the value of the
supercurrent is very sensitive to the distance between the
barriers (thickness of interior superconductor layer). At
the supercurrent pattern, there is presence of resonance
peaks, which is linked to the resonant tunneling of
Cooper pairs through the double-barrier structure. We
have found the relationship for the thickness of the
interior superconductor layer, for which the double-
barrier becomes fully transparent, even though the parti-
al transparency of each barrier can be small.

Also we investigated the current�phase relation for
the double barrier tunnel Josephson junction. We have
established an equation for the critical value of the
supercurrent and calculated the skewness in the current�
phase relation for di�erent values of the transparency of
the junction.
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Ó ðîáîòi ïîäàíî ðåçóëüòàòè âèâ÷åííÿ ñòðóìîâèõ ñòàíiâ ó äâîáàð'¹ðíîìó äæîçåôñîíiâñüêîìó êîí-
òàêòi. Äîñëiäæóâàíèé òóíåëüíèé êîíòàêò ìà¹ ñòðóêòóðó SISIS (S ïîçíà÷à¹ íàäïðîâiäíèê, I � içîëÿ-
òîð). Íàäïðîâiäíèé ñòðóì ó áàãàòîøàðîâèõ ñòðóêòóðàõ ìà¹ ÿêiñíi âiäìiííîñòi âiä ñòðóìó â �êëàñè-
÷íîìó� òóíåëüíîìó êîíòàêòi (íàïðèêëàä, ñòðóêòóðè SIS). Öi âiäìiííîñòi ïåðåäóñiì ïîâ'ÿçàíi ç êâàí-
òîâèì ðåçîíàíñíèì òóíåëþâàííÿì. Ðîçãëÿíóòèé ó ðîáîòi SISIS- êîíòàêò ìîäåëþ¹òüñÿ ïîäâiéíèì
äåëüòà-ôóíêöiéíèì ïîòåíöiàëüíèì áàð'¹ðîì. Êîåôiöi¹íò ïðîõîäæåííÿ åëåêòðîíiâ ÷åðåç ïîäâiéíèé
áàð'¹ð çàëåæèòü âiä âiäñòàíi ìiæ áàð'¹ðàìè. Çà ïåâíèõ çíà÷åíü öi¹¨ âiäñòàíi êîåôiöi¹íò ïðîõîäæåííÿ
äîðiâíþ¹ îäèíèöi, òîáòî áàð'¹ð ñòà¹ àáñîëþòíî ïðîçîðèì äëÿ åëåêòðîíiâ.

Ó ðîáîòi ïîêàçàíî, ùî çíà÷åííÿ íàäïðîâiäíîãî ñòðóìó ÷åðåç äâîáàð'¹ðíèé êîíòàêò äóæå ÷óòëèâå
äî âiäñòàíi ìiæ áàð'¹ðàìè. Îòæå, ðåãóëþþ÷è öþ âiäñòàíü, ìîæíà ñòâîðþâàòè íàäïðîâiäíi êîíòàêòè
ç âèñîêèì çíà÷åííÿì êðèòè÷íîãî ñòðóìó. Ìè îá÷èñëèëè, çà ÿêèõ çíà÷åíü òîâùèíè âíóòðiøíüîãî
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íàäïðîâiäíîãî ïðîøàðêó âèíèêà¹ ðåçîíàíñíå òóíåëþâàííÿ, é îäåðæàëè ðiâíÿííÿ äëÿ êðèòè÷íîãî
çíà÷åííÿ ñòðóìó òà ðîçðàõóâàëè éîãî çíà÷åííÿ äëÿ ðiçíèõ ïðîçîðîñòåé íà ïðèêëàäi òóíåëüíîãî
êîíòàêòó NbAl2O3NbAl2O3Nb. Òàêîæ ó ðîáîòi äîñëiäæåíî çàëåæíiñòü íàäïðîâiäíîãî ñòðóìó âiä
êîãåðåíòíî¨ ðiçíèöi ôàç íàäïðîâiäíèêiâ, ùî óòâîðþþòü êîíòàêò. Ïîêàçàíî, ùî çà çðîñòàííÿ êîå-
ôiöi¹íòà ïðîõîäæåííÿ åëåêòðîíiâ ÷åðåç áàð'¹ð çàëåæíiñòü äæîçåôñîíiâñüêîãî ñòðóìó íåïåðåðâíî
çìiíþ¹ ôîðìó âiä ñèíóñî¨äíî¨ äî ïèëêîïîäiáíî¨.

Äëÿ êiëüêiñíîãî îïèñó ôîðìè çàëåæíîñòi òóíåëüíîãî ñòðóìó âiä êîãåðåíòíî¨ ðiçíèöi ôàç íà
áåðåãàõ êîíòàêòó çàïðîâàäæåíî é ðîçðàõîâàíî ñêîøåíiñòü ó çàëåæíîñòi ñòðóìó âiä ðiçíèöi ôàç.
Ñêîøåíiñòü ó çàëåæíîñòi ñòðóìó âiä ðiçíèöi ôàç ¹ âàæëèâèì ïàðàìåòðîì òóíåëüíîãî êîíòàêòó,
îñêiëüêè âîíà ìîæå áóòè áåçïîñåðåäíüî âèìiðÿíà åêñïåðèìåíòàëüíî çà äîïîìîãîþ ôàçî÷óòëèâî¨
SQUID-iíòåðôåðåíöiéíî¨ òåõíiêè. Îäåðæàíi â ðîáîòi òåîðåòè÷íi ïiäõîäè ìîæíà ïåðåíåñòè íà òó-
íåëüíi êîíòàêòè iíøî¨ ãåîìåòði¨ (íàïðèêëàä, S1IS2IS3).

Êëþ÷îâi ñëîâà: äæîçåôñîíiâñüêèé êîíòàêò, ðåçîíàíñíå òóíåëþâàííÿ, íàäïðîâiäíèé ñòðóì, êî-
ãåðåíòíà ðiçíèöÿ ôàç, ñêîøåíiñòü.
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