Journal of Physical Studies 25(1), Article 1201 [8 pages] (2021)
DOI: https://doi.org/10.30970/jps.25.1201

LUMINESCENT AND SCINTILLATION PROPERTIES OF PEROVSKITE CsPbBr3 CRYSTAL AT CRYOGENIC TEMPERATURES

M. Rudko{1,2} , V. Kolomiets2, V. Kapustianyk2 , R. Gamernyk{2} , V. Mykhaylyk3 

1Scientific-Technical and Educational Centre of Low Temperature Studies, Ivan Franko National University of Lviv,
50, Drahomanov St., 79005, Lviv, Ukraine,
2 Faculty of Physics, Ivan Franko National University of Lviv,
50, Drahomanov St., 79005, Lviv, Ukraine
3Diamond Light Source, Harwell Campus, Didcot, OX11 0DE, UK

Received 12 November 2020; in final form 18 December 2020; accepted 18 January 2021; published online 23 February 2021

X-ray luminescence and scintillation characteristics of CsPbBr$_3$ crystal from the perovskites family were investigated over the temperature range of 7-200 K. At low temperatures CsPbBr$_3$ was found to be a very bright scintillator with the fast response demonstrating a very short decay time constant 1 ns at 7 K. The light output was measured to be 109 000 $\pm$22 000 ph/MeV at excitation with $α$-particles of $^{241}$Am. The obtained results testify that CsPbBr$_3$ is a very potent scintillation material, which would compete with the commercial analogues in the case of the cryogenic applications. Besides, the study has clarified the origin of the intense slow component observed below 70 K that would be considered an obvious disadvantage for the scintillator applications, since it causes an afterglow. It has been shown that the corresponding radiation is due to the impurities and capture centers. This implies possibility for elimination of the slow component by optimization of the material using an improved growth process.

Key words: scintillation, light output, decay time, luminescence, detectors of ionizing radiation, perovskite, cryogenic applications

Full text


References
  1. C. K. Moller, Nature 182, 1436 (1958);
    Crossref
  2. D. Fröhlich et al., J. Lumin. 18/19 385 (1979);
    Crossref
  3. K. С. Aлександров, A. T. Aнистратов, Б. В. Безносиков, Н. В. Федосеева, Фазовые переходы в кристаллах галоидных соединений АВХ3 (Наукa, Москва, 1981).
  4. И. П. Пашук, Н. С. Пидзырайло, M. Г. Maцькo, Физ. тверд. тела 23, 1263 (1981).
  5. K. Nitsch et al., Chem. Phys. Lett. 258, 518 (1996);
    Crossref
  6. M. A. Green, A. Ho-Baillie, H. J. Snaith, Nat. Photonics 8, 505 (2014);
    Crossref
  7. J. P. Correa-Baena et al., Science 358, 739 (2017);
    Crossref
  8. S. D. Stranks, H. J. Snaith, Nat. Nanotechnol. 10, 391 (2015);
    Crossref
  9. Y. Fu et al., Nano Lett. 16, 1000 (2016);
    Crossref
  10. W. Tian, H. Zhou, L. Li, Small 13, 1702107 (2017);
    Crossref
  11. А. С. Волошиновський та ін., Укр. фіз. журн. 38, 1012 (1993).
  12. M. Kobayashi et al., Nucl. Instr. Meth. Phys. Res. A 592, 369 (2008);
    Crossref
  13. K. Shibuya et al., Jap. J. Appl. Phys. 43, L1333 (2004);
    Crossref
  14. M. D. Birowosuto et al., Sci. Rep. 6, 37254 (2016);
    Crossref
  15. N. Kawano et al., Sci. Rep. 7, 14754 (2017);
    Crossref
  16. Q. Chen et al., Nature 561, 88 (2018);
    Crossref
  17. M. Gandini et al., Nat. Nanotechnol. 15, 462 (2020);
    Crossref
  18. M. Sytnyk, S. Deumel, S. F. Tedde et al., Appl. Phys. Lett. 115, 190501 (2019);
    Crossref
  19. C. Dujardin et al., IEEE Trans. Nucl. Sci. 65, 1977-1997 (2018);
    Crossref
  20. F. Maddalena et al., Crystals 9, 88 (2019);
    Crossref
  21. V. B. Mykhaylyk, H. Kraus, L. Bobb, R. Gamernyk, K. Koronski, Sci. Rep. 9, 5274 (2019);
    Crossref
  22. V. B. Mikhailik, H. Kraus, Rad. Meas. 49, 7 (2013);
    Crossref
  23. C. C. Stoumpos, M. G. Kanatzidis, Acc. Chem. Res. 48, 2791 (2015);
    Crossref
  24. C. C. Stoumpos et al., Cryst. Growth Design 13, 2722 (2013);
    Crossref
  25. A. Xie et al., J. Phys. Chem. C 122, 16265 (2018);
    Crossref
  26. T. M. Demkiv et al., J. Lumin. 198, 103 (2018);
    Crossref
  27. M. Dendebera et al., J. Lumin. 225, 117346 (2020);
    Crossref
  28. M. Sebastian et al., Phys. Rev. B 92, 235210 (2015);
    Crossref
  29. I. Pelant, J. Valenta, Luminescence Spectroscopy of Semiconductors (Oxford University Press, 2012);
    Crossref
  30. X. Lao et al., Nanoscale 10, 9949 (2018);
    Crossref
  31. T. Makino, M. Watanabe, T. Hayashi, M. Ashida, Phys. Rev. B 57, 3714 (1998);
    Crossref
  32. A. M. Hartel, S. Gutsch,D. Hiller, Phys. Rev. B 87, 035428 (2013);
    Crossref
  33. V. S. Chirvony et al., J. Phys. Chem. C 121, 13381 (2017);
    Crossref
  34. V. B. Mykhaylyk, H. Kraus, M. Saliba, Mater. Horizons (2019);
    Crossref
  35. L. Chen et al., Nano Lett. 18, 2074 (2018);
    Crossref
  36. J. Ramade et al., Nanoscale 6393-6401, 10 (2018);
    Crossref
  37. O. Labeau, P. Tamarat, B. Lounis, Phys. Rev. Lett. 90, 257404 (2003);
    Crossref
  38. M. S. Gaponenko et al., Phys. Rev. B 82, 125320 (2010);
    Crossref
  39. D. G. Kim, H. Yokota, K. Shimura, M. Nakayama, Phys. Chem. 15, 21051 (2013);
    Crossref
  40. B. T. Diroll, G. Nedelcu, M. V. Kovalenko, R. D. Schaller, Adv. Funct. Mater. 3, 1606750 (2017);
    Crossref
  41. M. Califano, A. Franceschetti, A. Zunger, Nano Lett. 5, 2360 (2005);
    Crossref
  42. C. Wei et al., Sci. Rep. 6, 33890 (2016);
    Crossref
  43. O. Brandt et al., Phys. Rev. B 58, R15977 (1998);
    Crossref
  44. D. N. ter Weele, D. R. Schaart, P. Dorenboss, IEEE Trans. Nucl. Sci. 62, 727 (2015);
    Crossref
  45. S. Blahuta et al., IEEE Trans. Nucl. Sci. 60, 3134 (2013);
    Crossref
  46. V. B. Mikhailik et al., Nucl. Instr. Meth. Phys. Res. A 583, 350 (2007);
    Crossref
  47. V. B. Mikahilik, H. Kraus, Phys. Stat. Solidi B 247, 1583 (2010);
    Crossref
  48. V. A. M. Dubovik et al., Acta Phys. Polon. A 117, 15 (2010);
    Crossref
  49. H. Zhang et al., Cryst. Growth Design 17, 6426 (2017);
    Crossref