Journal of Physical Studies 25(1), Article 1602 [9 pages] (2021)
DOI: https://doi.org/10.30970/jps.25.1602

ELECTRON SCATTERING ANISOTROPY IN SILICON

G. P. Gaidar{1} , P. I. Baranskii{2}

{1}Institute for Nuclear Research of the NAS of Ukraine,
47, Nauky Ave., Kyiv, UA–03028, Ukraine
e-mail: gaydar@kinr.kiev.ua
{2}V. Lashkaryov Institute of Semiconductor Physics of the NAS of Ukraine,
45, Nauky Ave., Kyiv, UA–03028, Ukraine

Received 05 July 2020; in final form 13 December 2020; accepted 21 December 2020; published online 03 March 2021

In \mbox{\textit{n}-Si} single crystals, the scattering anisotropy of charge carriers has been studied depending on the compensation level of impurities. Theoretical calculations were carried out within the framework of the anisotropic scattering theory. The electrical conductivity, the Hall effect, and the tensoresistance of silicon crystals with various difference and summary concentrations of impurities were measured. It was established that an increase in the scattering anisotropy in \mbox{\textit{n}-Si} crystals is practically independent of the degree of their compensation, but is associated only with an increase in the total concentration of ionized impurities. The intra-valley anisotropy of the scattering of charge carriers on dislocations as scatterers was studied for a fixed location of the current with respect to the direction of their preferred orientation. Dislocations (having a distinguished orientation) were introduced into the \mbox{\textit{n}-Si} crystal by the plastic bending deformation at 1073 K. It has been revealed that in \mbox{\textit{n}-Si} crystals, the intra-valley anisotropy of the scattering on dislocations is much higher than the scattering anisotropy on the charged point defects.

Key words: silicon, Hall effect, tensoresistance, compensation degree, scattering anisotropy, dislocations

Full text


References
  1. S. Shevchenko, A. N. Tereshchenko, Solid State Phenom. 156-158, 289 (2009);
    Crossref
  2. Z. Liu, M. O. Nestoklon, J. L. Cheng, E. L. Ivchenko, M. W. Wu, Phys. Solid State 55, 1619 (2013);
    Crossref
  3. S. V. Luniov, O. V. Burban, P. F. Nazarchuk, Semiconductors 49, 574 (2015);
    Crossref
  4. G. P. Gaidar, E. Yu. Gaivoronskaya, Surf. Eng. Appl. Electrochem. 54, 385 (2018);
    Crossref
  5. S. V. Luniov, P. F. Nazarchuk, O. V. Burban, Semiconductors 48, 438 (2014);
    Crossref
  6. G. P. Gaidar, P. I. Baranskii, J. Phys. Stud. 24, 4603 (2019);
    Crossref
  7. Yu. A. Osipyan et al., Electronic Properties of Dislocations in Semiconductors (Editorial URSS, Moscow, 2000).
  8. W. Schröter, H. Cerva, Solid State Phenom. 85-86, 67 (2001);
    Crossref
  9. G. P. Gaidar, A. P. Dolgolenko, P. G. Litovchenko, Probl. Atom. Sci. Technol. No.4(62), 263 (2009).
  10. M. Trempa, G. Müller, J. Friedrich, C. Reimann, in Handbook of Photovoltaic Silicon, edited by D. Yang (Springer, Berlin–Heidelberg, 2019), p. 589;
    Crossref
  11. C. W. Lan, in Handbook of Photovoltaic Silicon, edited by D. Yang (Springer, Berlin–Heidelberg, 2019), p. 175;
    Crossref
  12. M. Kittler, M. Reiche, Adv. Eng. Mater. 11, 249 (2009);
    Crossref
  13. P. I. Baranskii, A. E. Belyaev, G. P. Gaidar, Kinetic Effects in Multi-Valley Semiconductors (Naukova Dumka, Kyiv, 2019).
  14. P. I. Baranskii, I. S. Buda, I. V. Dakhovskii, Theory of Thermoelectric and Thermomagnetic Phe\-nom\-ena in Anisotropic Semiconductors (Naukova Dumka, Kiev, 1987).
  15. P. I. Baranskii, I. S. Buda, I. V. Dakhovskii, V. V. Ko\-lo\-moets, Electrical and Galvanomagnetic Phe\-nom\-ena in Anisotropic Semiconductors (Naukova Dumka, Kiev, 1977).
  16. G. P. Gaidar, P. I. Baranskii, Physica B 441, 80 (2014);
    Crossref
  17. V. M. Babich, N. I. Bletskan, E. F.Venger, Oxygen in Silicon Single Crystals (Interpress LTD, Kyiv, 1997); http://journal-spqeo.org.ua/users/books/O_in_Si.pdf
  18. V. E. Bakhrushin, Preparation and Physical Properties of Lightly Doped Layers of Multilayer Compositions (GU "ZIGMU", Zaporizhzhia, 2001).
  19. U. Bardsli, Usp. Fiz. Nauk 73, 121 (1961);
    Crossref
  20. D. Cavalcoli, A. Cavallini, E. Gombia, J. Phys. III France 7, 1399 (1997);
    Crossref