Journal of Physical Studies 25(1), Article 1702 [6 pages] (2021)
DOI: https://doi.org/10.30970/jps.25.1702

THE EFFECT OF SILICON SURFACE TREATMENT ON THE ELECTRICAL PROPERTIES OF n-MoN/n-Si HETEROJUNCTIONS

M. M. Solovan , H. P. Parkhomenko , P. D. Marianchuk 

Yuriy Fedkovych Chernivtsi National University,
2, Kotsyubynskyj St., Chernivtsi, 58012, Ukraine,
e-mail: h.parkhomenko@chnu.edu.ua

Received 16 April 2020; in final form 22 October 2020; accepted 28 October 2020; published online 24 January 2021

MoN/$n$-Si semiconductor heterojunctions were fabricated by sputtering thin films of molybdenum nitride using the reactive magnetron sputtering in a universal vacuum system Leybold-Heraeus L560 on silicon substrates 5x5x0.3 mm in size, at a temperature of 473 K, with different surface treatment (growing nanowires using a chemical method). We have measured current-voltage (at different temperatures) and capacitance-voltage characteristics. It has been established that growing nanowires leads to some deterioration in the electrical properties and band parameters of MoN/$n$-Si heterojunctions; however, further digestion in HF positively affects the electrical properties and band parameters of heterostructures. The mechanisms of the current flow through heterojunctions do not change.

It has been established that the electric current flowing through the studied heterostructures at small forward biases is caused by the generatio$n$-recombination processes in the region of the spatial nucleus; the main mechanism of the current transfer is the tunneling-recombination. The main mechanism of the current transport at reverse biases for MoN/$n$-Si heterostructures is tunneling through the space charge region.

A detailed analysis of the capacitance-voltage characteristics of the MoN/$n$-Si heterostructures with surface treatment was carried out. It was shown that the series resistance for heterostructures with grown nanowires and etched in HF significantly affects their capacitance-voltage characteristics.

The main photoelectric parameters of MoN/$n$-Si heterostructures with grown nanowires and etched in HF were determined, namely, the open circuit voltage $ V_ {\rm oc} = 0.13$ V, the short circuit current $ I_ {\rm sc} = 0.54$ mA/cm$^{2}$ at a light intensity of 80 mW/cm$^{2}$.

Key words: heterostructure, MoN, Si, nanowires, current transport.

Full text


References
  1. B. Hoffmann et al., in Nanowires – Recent Advances (InTech, 2012), p. 211;
    Crossref
  2. H. P. Parkhomenko, M. N. Solovan, P. D. Maryanchuk, Semiconductors 52, 859 (2018);
    Crossref
  3. V. Schmidt, J. V. Wittemann, S. Senz, U. Gösele. Adv. Mater. 21, 2681 (2009);
    Crossref
  4. C. K. Chan et al., Nat. Nanotechnol. 3, 31 (2008);
    Crossref
  5. C. Jui-Chang, T. Shuo-Lun, C. Mao-Chieh, Thin Solid Films 346, 299 (1999);
    Crossref
  6. P. Alén, M. Ritala, K. Arstila, J. Keinonen, M. Leskelä, J. Electrochem. Soc. 152, G361 (2005);
    Crossref
  7. T. Bing-Yue, H. Chih-Feng, L. Chih-Hsun, Appl. J. Electrochem. Soc. 153, G197 (2006);
    Crossref
  8. G. Gagnon et al., J. Appl. Phys. 75, 1565 (1994);
    Crossref
  9. Г. В. Самсонов, Нитриды (Наукова думка, Киев, 1969).
  10. М. М. Солован, П. Д. Мар'янчук, Радіофіз. електрон. 24, 49 (2019).
  11. L. Zhao et al., Adv. Electron. Mater. 3, 1700373 (2017);
    Crossref
  12. A. L. Fahrenbruch, R. H. Bube, Fundamentals of solar cells. Photovoltaic solar energy conversion (Academic Press, New York, 1983).
  13. B. L. Sharma, R. K. Purohit, Semiconductor Heterojunctions (Pergamon, Oxford, 1974; Sov. Radio, Moscow, 1979).
  14. M.N. Solovan et al., Semicond. Sci. Technol. 29, 015007 (2013);
    Crossref
  15. Э. Х. Родерик, Контакты металл-полупроводник (Радио и связь, Москва,1982).
  16. S. M. Sze, K. K. Ng, Physics of Semiconductor Devices (Wiley, New York, 2007).
  17. Л. С. Берман, Емкостные методы исследования полупроводниковых приборов (Наука, Ленинград, 1972).
  18. V. Brus, Aung Ko Ko Kyaw, P. D. Maryanchuk, Jie Zhang Prog. Photovolt. Res. Appl. 23, 1526 (2015);
    Crossref