Journal of Physical Studies 25(2), Article 2701 [4 pages] (2021)
DOI: https://doi.org/10.30970/jps.25.2701

STRUCTURE AND MAGNETIC PROPERTIES OF [(CH3)3NH]MnCl3×2H2O CRYSTALS

V. Kapustianyk1 , Yu. Chornii1 , P. Demchenko2 , E. Khatsko3

1Faculty of Physics, Ivan Franko National University of Lviv,
50, Drahomanov St., Lviv, UA–79005, Ukraine,
2Faculty of Chemistry, Ivan Franko National University of Lviv,
8, Kyrylo & Mefodiy St., Lviv, UA–79005, Ukraine,
3B. Verkin Institute for Low Temperature Physics and Engineering, National Academy of Sciences of Ukraine,
47, Nauky Ave., Kharkiv, UA–61103, Ukraine,
e-mail:ychornii@gmail.com

Received 13 November 2020; in final form 27 January 2021; accepted 28 January 2021; published online 03 June 2021

The X-ray powder diffraction study of [(CH$_3$)$_3$NH]MnCl$_3\times2$H$_2$O (TrMAMnCl) single crystal confirmed the chemical composition and symmetry of the investigated compound and refined the lattice parameters in comparison with the previous data: \textit{a} = 16.7492(7), \textit{b} = 7.4241(3),\linebreak \textit{c} = 8.2119(3) Å, unit cell volume \textit{V} = 1021.13(7) Å$^3$. Temperature and field dependences of the magnetization of TrMAMnCl single crystals have been measured. They shown that TrMAMnCl behaves as a canted one-dimensional antiferromagnet with the Neel temperature $T_{\rm N} = 0.98$ K. Taking into account the data of ESR, magnetic specific heat and structural study, behavior of the magnetization can be explained by assumming that there is a hidden canting of the spin along the $b$ axis in the investigated crystal. The broad maximum of the magnetization observed at \linebreak \textit{T} = 2.5 K (just above the ordering temperature) was related to the effect of the noticeable short-range order by analogy with the related compounds with alkylammonium cations and linear chains of the magnetic ions complexes.

Key words: antiferromagnet, magnetic properties, magnetization, low-dimensional spin systems, X-ray powder diffraction

Full text


References
  1. K. Iio, M. Isobe, K. Nagata, J. Phys. Soc. Jpn. 38, 1212 (1975);
    Crossref
  2. S. Merchant, J. N. Mc Elearney, G. E. Shankle, R. L. Carlin, Physica 78, 308 (1974);
    Crossref
  3. D. B. Losee et al., Phys. Rev. B 8, 2185 (1973);
    Crossref
  4. S. Chikazawa, T. Sato, Y. Miyako, K. lio, K Nagah, J. Magn. Magn. 15-18, 749 (1980);
    Crossref
  5. V. Kapustianyk, V. Rudyk, P. Yonak, B. Kundys, Phys. Status Solidi B 252, 1778 (2015);
    Crossref
  6. B. Kundys et al., Phys. Rev. B 81, 224434 (2010);
    Crossref
  7. V. Kapustianyk et al., Sci. Rep. 7, 14109 (2017);
    Crossref
  8. T. Tsuboi, J. Phys. Cond. Matt. 5, 1143 (1993);
    Crossref
  9. Stoe WinXPOW, version 3.03 (Stoe Cie GmbH, Darmstadt, Germany, 2010).
  10. W. Kraus, G. Nolze, PowderCell for Windows, version 2.4 (Federal Institute for Materials Research and Testing, Berlin, March 2000).
  11. J. Rodriguez-Carvajal, Newsletter Common on Powder Diffraction of IUCr, 26, 12 (2001);
  12. T. Roisnel, J. Rodriguez-Carvajal, Mater. Sci. Forum 378–381, 118 (2001);
    Crossref
  13. R. E. Caputo, R. D. Willett, J. A. Muir, Acta Cryst. B 32, 2639 (1976);
    Crossref
  14. R. L. Carlin, Magnetochemistry (Springer-Verlag Berlin Heidelberg, Berlin, 1986);
    Crossref
  15. A. N. Bludov et al., Low Temp. Phys. 46, 643 (2020);
    Crossref
  16. P. K. Majumdar, R. K. Mukherjee, A. K. Banerjee, Phys. Rev. B 41, 65 (1990);
    Crossref