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The paper studies quantized space described by a time reversal invariant and rotationally invariant
noncommutative algebra of a canonical type. A particle in a uniform �eld is considered. We �nd
exactly the energy of a particle in a uniform �eld in the quantized space and its wavefunctions.
It is shown that the motion of the particle in the �eld direction in time reversal invariant and
rotationally invariant noncommutative space is the same as in an ordinary space (a space with the
ordinary commutation relations for the operators of coordinates and the operators of momenta).
The noncommutativity of the coordinates has an in�uence only on the motion of the particle in the
directions perpendicular to the �eld direction. Namely, space quantization has an e�ect on the mass
of the particle.
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I. INTRODUCTION

According to the String theory and Quantum gravity,
a minimal length of the order of the Planck length exists
[1, 2]. A space with the minimal length can be descri-
bed on the basis of the idea of the deformation of the
commutation relations for operators of coordinates and
operators of momenta.
Many di�erent deformed algebras leading to the mi-

nimal length were proposed. One can distinguish three
types of the algebras: noncommutative algebras of the
canonical type (see, for instance, [3�6]), noncommutati-
ve algebras of the Lie type (see, for instance, [7�9]),
nonlinear deformed algebras (see, for instance, [10�12]).
Noncommutative algebras of a canonical type are the
most simple algebras which describe space quantization
on the Planck scale. An algebra with the noncommutati-
vity of coordinates of canonical type is characterized by
the following relations

[Xi, Xj ] = i~θij , (1)

[Xi, Pj ] = i~δij , (2)

[Pi, Pj ] = 0. (3)

Here θij are called parameters of noncommutativity whi-
ch are elements of constant matrixes. Contrary to di-
mensionless δij in (2), parameters θij are dimensionful,
~θij in (1) has the dimension of squared length. Properti-
es of physical systems within the frame of noncommutati-
ve algebra of a canonical type have been widely studied
(see, for instance, [3�6, 13�19], and references therein).
Among the problems, a noncommutative gravitational
quantum well has been examined [14, 18, 19]. It is worth
stressing that in a noncommutative space characterized
by commutation relations (1)�(3), the rotational and
time reversal symmetries are not preserved [5, 20�22].

In [23] a noncommutative algebra which is rotationally
invariant and equivalent to a noncommutative algebra
of a canonical type was proposed. In [24] the e�ect of
noncommutativity on the mass of a particle in a uni-
form �eld was found within the frame of the rotationally
invariant noncommutative algebra of a canonical type
[23].

In the present paper, we study a particle in a uni-
form �eld within the frame of the rotationally invariant
and time reversal invariant noncommutative algebra of a
canonical type proposed in [22]. The total Hamiltonian
is constructed and analyzed. We �nd exactly the energy
and wave functions of a particle in a uniform �eld in
a noncommutative space with preserved rotational and
time reversal symmetries.

The paper is organized as follows. In Section 2, a ti-
me reversal and rotationally invariant algebra with the
noncommutativity of coordinates is presented. Section
3 is devoted to the studies of a particle in uniform �-
eld in rotationally invariant and time reversal invari-
ant noncommutative space. Conclusions are presented in
Section 4.

II. TIME REVERSAL AND ROTATIONALLY
INVARIANT ALGEBRA WITH THE

CANONICAL NONCOMMUTATIVITY OF
COORDINATES

In [22] for preserving rotational and time reversal
symmetries in a noncommutative space, the authors
considered the idea to generalize parameters of
noncommutativity, de�ning the tensor of the coordinate
noncommutativity as

θij =
cθ
~
∑
k

εijkp
a
k, (4)
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here pai are additional momenta governed by a rotati-
onally invariant system, cθ is a constant. For simplici-
ty, in [22] the additional momenta were assumed to be
governed by the harmonic oscillator

Ha
osc =

(pa)2

2mosc
+
moscω

2
osca

2

2
. (5)

Here ai are additional coordinates conjugated to
momenta pai . The following relations are satis�ed

[ai, p
a
j ] = i~δij , (6)

[ai, aj ] = [pai , p
a
j ] = 0. (7)

The oscillator length is considered to be equal to the
Planck length

√
~/√moscωosc = lP and the frequency of

the oscillator is assumed to be very large [22]. So, the
harmonic oscillator (5) remains in the ground state.
The time reversal and rotationally invariant algebra

with the canonical noncommutativity of coordinates
reads

[Xi, Xj ] = icθ
∑
k

εijkp
a
k, (8)

[Xi, Pj ] = i~δij , [Pi, Pj ] = 0, (9)

[pai , Xj ] = [pai , Pj ] = 0. (10)

It is convenient to represent coordinates and momenta
which satisfy (8), (9) by coordinates and momenta xi, pi
satisfying the ordinary commutation relations

[xi, xj ] = [pi, pj ] = 0, (11)

[xi, pj ] = i~δij . (12)

The representation is

Xi = xi +
1

2
[θ × p]i, Pi = pi, (13)

here θ = (θ1, θ2, θ3),

θi =
cθp

a
i

~
. (14)

From relation (10) it follows that algebra (8),
(9) is equivalent to the algebra with the canonical
noncommutativity of coordinates. Relations (8), (9) are
invariant under the time reversal transformation whi-
ch includes a complex conjugation. Also, after this

transformation, the coordinates and the momenta change
as Xi → Xi, Pi → −Pi, pai → −pai . Algebra (8), (9) is
time reversal invariant [22]. After rotation, the coordi-
nates and momenta change as X ′i = U(ϕ)XiU

+(ϕ),
P ′i = U(ϕ)PiU

+(ϕ) pa′i = U(ϕ)paiU
+(ϕ), U(ϕ) =

exp(iϕ(n·Lt)/~) with Lt = [x×p]+[a×pa]. Commutati-
on relations (8), (9) are invariant under rotation, the
algebra is rotationally invariant [22].

In the next section, we study a particle in a uniform
�eld within the frame of a rotationally invariant and time
reversal invariant noncommutative algebra (8), (9).

III. ENERGY OF A PARTICLE IN A UNIFORM
FIELD IN A ROTATIONALLY INVARIANT AND

TIME REVERSAL INVARIANT
NONCOMMUTATIVE SPACE

Let us study a particle with mass m in uniform �eld
with the following Hamiltonian

Hp =
P 2

2m
− αX3. (15)

In (15) the coordinates and momenta satisfy relations
(8), (9). Without loss of generality, for convenience we
consider the �eld pointed in the X3 direction (in (15)
α characterizes the force acting on the particle). For
instance, for a particle in a uniform gravitational �eld g
with the direction along the X3 axis, we have α = −mg.
In the case of a charged particle in a uniform electric �eld
E with the direction along the X3 axis, the parameter
α reads α = −qE, where q is the charge of the parti-
cle. Because algebra (8), (9) is rotationally invariant, the
results of this section can be generalized to the case of
an arbitrary direction of the �eld.

To construct a time reversal invariant and rotationally
invariant noncommutative algebra (8), (9) additional
momenta pai were involved, therefore, to study a particle
in a uniform �eld in the space (8), (9) one should write
the following Hamiltonian

H =
P 2

2m
− αX3 +

(pa)2

2mosc
+
moscω

2
osca

2

2
, (16)

the last two terms where correspond to harmonic osci-
llator (5). Then, to �nd the in�uence of the space quanti-
zation on the energy of a particle in a uniform �eld, it is
convenient to use representation (13) and rewrite Hami-
ltonian (16) as follows

H =
p2

2m
− αx3 −

α

2
[θ × p]3 +

(pa)2

2mosc
+
moscω

2
osca

2

2

=
p2

2m
− αx3 −

αcθ
2~

(pa1p2 − pa2p1) +
(pa)2

2mosc
+
moscω

2
osca

2

2
(17)

Here we take into account (14).
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To �nd the exact expression for the energy of a particle in a uniform �eld in a space described by commutation
relations (8), (9), we rewrite Hamiltonian (17) as

H =

(
1− α2c2θmmosc

4~2

)
p2

1

2m
+

(
1− α2c2θmmosc

4~2

)
p2

2

2m
+

p2
3

2m
− αx3

+
1

2mosc

(
pa1 −

αcθmosc

2~
p2

)2

+
1

2mosc

(
pa2 +

αcθmosc

2~
p1

)2

+
(pa3)2

2mosc
+
moscω

2
osca

2
1

2
+
moscω

2
osca

2
2

2
+
moscω

2
osca

2
3

2
. (18)

Note that operators

H̃p =

(
1− α2c2θm

4~ωoscl2P

)
p2

1

2m
+

(
1− α2c2θm

4~ωoscl2P

)
p2

2

2m
+

p2
3

2m
− αx3, (19)

and

H̃osc =
1

2mosc

(
pa1 −

αcθ
2ωoscl2P

p2

)2

+
1

2mosc

(
pa2 +

αcθ
2ωoscl2P

p1

)2

+
(pa3)2

2mosc
+
moscω

2
osca

2
1

2
+
moscω

2
osca

2
2

2
+
moscω

2
osca

2
3

2
, (20)

in (18) commute

[H̃p, H̃osc] = 0. (21)

Writing (19), (20) we take into account that√
~

moscωosc
= lP, (22)

as was assumed in the paper [22], where the
noncommutative algebra invariant upon time reversal
and rotationally invariant was constructed.
Operator H̃p can be rewritten as

H̃p = H̃1 + H̃2 + H̃3, (23)

with

H̃1 =
p2

1

2meff
, (24)

H̃2 =
p2

2

2meff
, (25)

H̃3 =
p2

3

2m
− αx3, (26)

[H̃1, H̃2] = [H̃2, H̃3] = [H̃1, H̃3] = 0. (27)

The e�ective mass reads

meff = m

(
1− α2c2θmmosc

4~2

)−1

= m

(
1− α2c2θm

4~ωoscl2P

)−1

. (28)

Here we would like to mention that according to (28),
the e�ective mass meff is positive if α2c2θm/4~ωoscl

2
P <

1. Let us analyze this inequality. Assuming that the
minimal length for an electron is the Planck length,
we have cθ = 2l3P/3~. To write this expression, we
take into account that the minimal length is as follows
4
√

3~2〈θ2〉/ 4
√

2, where 〈θ2〉 =
∑
i〈ψa0,0,0|θ2

i |ψa0,0,0〉 =

3c2θ/2l
2
P, ψ

a
0,0,0 is eigenfunction of harmonic oscillator (5)

in the ground state (see [26]). Note that ωosc is assumed
to be very large [22]. Considering ωosc = 1/tP (tP is
the Planck time), m = me (me is the mass of electron)
the inequality can be rewritten as α2me/9F

2
PmP < 1,

here FP is the Planck force, mP is the Planck mass.
Note that this inequality is violated for very large α,
α ≥ 3FP

√
mP/
√
me = 5, 6 · 1055Í. In this case, the one

particle theory does not work. Therefore, it has to be
studied separately.

The operator of coordinate x3 and the operator of
momentum p3 in H̃3 satisfy the ordinary commutation
relations (11), (12). So, H̃3 corresponds to the Hami-
ltonian of a particle in a uniform �eld in the ordinary
space (in a space where the operators of coordinates and
operators of momenta satisfy the ordinary commutation
relations).

Introducing

p̃a1 = pa1 −
αcθ

2ωoscl2P
p2, (29)

p̃a2 = pa2 +
αcθ

2ωoscl2P
p1, (30)

p̃a3 = pa3 , (31)
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one can write (20) as

H̃osc =
(p̃a)2

2mosc
+
moscω

2
osca

2

2
. (32)

Operators ai and p̃
a
i satisfy the ordinary commutation

relations

[ai, aj ] = [p̃ai , p̃
a
j ] = 0, (33)

[ai, p̃
a
j ] = i~δij , (34)

Therefore operator (32) corresponds to the Hamiltoni-
an of a three-dimensional harmonic oscillator with mass
mosc and frequency ωosc in the ordinary space. The
spectrum of the oscillator in the ordinary space is well
known. Let us recall that the frequency ωosc is very large
[22], and the oscillator put in the ground state remains
in it. So, the oscillator energy is 3~ωosc/2.

Operators H̃1, H̃2, H̃3, H̃osc commute with each other
(see (21), (27)). So, the spectrum of a particle in a uni-
form �eld in a rotationally invariant and time reversal
invariant noncommutative space reads

E =
~2k2

1

2m

(
1− α2c2θm

4~ωoscl2P

)
+

~2k2
2

2m

(
1− α2c2θm

4~ωoscl2P

)
+ E3 +

3

2
~ωosc. (35)

Note that the motion of a particle in the directions
perpendicular to the �eld direction is free. In (35), k1,
k2 denote the components of the wave vector which
correspond to this motion, E3 denotes continious ei-
genvalues of H̃3. The last term in (35) corresponds to
the ground state energy of the harmonic oscillator (32).
Let us also write the eigenfunctions of the total Hami-

ltonian (18). Because relations (21), (27) are satis�ed, we
can write

ψ(x,a) = ψ̃1(x1)ψ̃2(x2)ψ̃3(x3)ψ̃(a), (36)

where ψ̃i(xi) are eigenfunctions of H̃i given by (24)-(26).
Note that ψ(3)(x3) is the eigenfunction of a particle in a
uniform �eld in the ordinary space, which is well known
(see, for instance, [27]). It reads

ψ(3)(x3) =

(
4m2

π3α~4

) 1
6

Φ

((
2mα

~2

) 1
3
(
−x3 −

E3

α

))
,(37)

here Φ is the Airy function

Φ(x) =
1√
π

∫ ∞
0

cos

(
t3

3
+ tx

)
dt. (38)

Functions ψ̃(a) in (36) are eigenfunctions of

H ′osc =
1

2mosc

(
pa1 −

αcθ~k2

2ωoscl2P

)2

+
1

2mosc

(
pa2 +

αcθ~k1

2ωoscl2P

)2

+
(pa3)2

2mosc

+
moscω

2
osca

2
1

2
+
moscω

2
osca

2
2

2
+
moscω

2
osca

2
3

2
. (39)

Hamiltonian (39) was obtained by replacing p1 and p2

with ~k1, ~k2, respectively, in (20). The eigenfunction of
(39) corresponding to the ground state reads

ψ̃(a) =
1

π
3
4 l

3
2

P

e
− a2

2l2
P

−iβ(k1a2−k2a1)
. (40)

Here for convenience we use the following notation

β =
αcθ

2ωoscl2P
. (41)

So, we can write the eigenfunctions of the total Hami-
ltonian (18). They read

ψ(x,a) = Ceik1x1eik2x2 (42)

×Φ

((
2mα

~2

) 1
3
(
−x3 −

E3

α

))
e
− a2

2l2
P

−iβ(k1a2−k2a1)
,

where C is the normalization constant.
Let us analyze the obtained results. It is important

to note that the features of the space structure on the
Planck scale have an e�ect only on the motion of a parti-
cle in the directions perpendicular to the direction of the
�eld. The �rst two terms in (35) can be rewritten usi-
ng e�ective mass (28). So, the space quantization has an
e�ect on the mass of the particle in a uniform �eld in a
rotationally invariant and time reversal invariant space
with the noncommutativity of coordinates.

CONCLUSION

In the paper, we have considered an algebra with the
noncommutativity of coordinates which is rotationally
and time reversal invariant (8), (9). This algebra descri-
bes space quantization at the Planck scale. The in�uence
of space quantization on the motion of a particle in a uni-
form �eld has been studied. Taking into account that
the rotationally invariant and time reversal invariant
noncommutative algebra contains additional momenta,
we have constructed and examined a total Hamiltonian
of a particle in a uniform �eld in a time reversal invari-
ant and rotationally invariant noncommutative space
(16). The energy and wave functions of the particle
have been found exactly (35), (43). We obtain that the
motion of a particle in the �eld direction in a rotati-
onally and time-reversal invariant noncommutative space
is the same as in a space with ordinary commutation
relations for operators of coordinates and operators of
momenta. Features of the space structure described by
noncommutative algebra (8), (9) have an e�ect on the
motion of a particle in the directions perpendicular to
the �eld direction. Similarly as in the ordinary space,
the motion of a particle in these directions is free. The
noncommutativity has only an e�ect on the particle
mass.
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×ÀÑÒÈÍÊÀ Â ÎÄÍÎÐIÄÍÎÌÓ ÏÎËI Â ÍÅÊÎÌÓÒÀÒÈÂÍÎÌÓ ÏÐÎÑÒÎÐI
ÇI ÇÁÅÐÅÆÅÍÎÞ ÑÈÌÅÒÐI�Þ ÂIÄÍÎÑÍÎ IÍÂÅÐÑI� ×ÀÑÓ ÒÀ ÑÔÅÐÈ×ÍÎÞ ÑÈÌÅÒÐI�Þ

Õ. Ï. Ãíàòåíêî, Õ. I. Ñòàõóð, À. Â. Êðèæîâà
Ëüâiâñüêèé íàöiîíàëüíèé óíiâåðñèòåò iìåíi Iâàíà Ôðàíêà, êàôåäðà òåîðåòè÷íî¨ ôiçèêè,

âóë. Äðàãîìàíîâà, 12, 79005 Ëüâiâ, Óêðà¨íà

Âèâ÷åíî âïëèâ êâàíòîâàíîñòi ïðîñòîðó íà ðóõ ÷àñòèíêè â îäíîðiäíîìó ïîëi. Äëÿ îïèñó îñî-
áëèâîñòåé ñòðóêòóðè ïðîñòîðó íà ïëàíêiâñüêèõ ìàñøòàáàõ òà âðàõóâàííÿ êâàíòîâàíîñòi ïðîñòîðó
ðîçãëÿíóòî iäåþ äåôîðìàöi¨ çâè÷íèõ êîìóòàöiéíèõ ñïiââiäíîøåíü äëÿ îïåðàòîðiâ êîîðäèíàò. À ñàìå:
ïðèïóñêà¹òüñÿ, ùî êîìóòàòîð êîîðäèíàò íå äîðiâíþ¹ íóëåâi. Ó ëiòåðàòóði âiäîìî áàãàòî ðiçíèõ òèïiâ
äåôîðìàöié çâè÷íèõ êîìóòàöiéíèõ ñïiââiäíîøåíü äëÿ îïåðàòîðiâ êîîðäèíàò òà iìïóëüñiâ. Íàéïðîñòi-
øîþ òà íàéáiëüø âèâ÷åíîþ ¹ àë åáðà ç íåêîìóòàòèâíiñòþ êîîðäèíàò êàíîíi÷íîãî òèïó. Âîíà îïèñó¹
êâàíòîâàíèé ïðîñòið, àëå çóìîâëþ¹ ïîðóøåííÿ ñèìåòði¨ âiäíîñíî iíâåðñi¨ ÷àñó, ïîðóøåííÿ ñôåðè÷íî¨
ñèìåòði¨. Ó ñòàòòi äîñëiäæåíî iíâàðiàíòíó âiäíîñíî iíâåðñi¨ ÷àñó òà ñôåðè÷íî-ñèìåòðè÷íó àë åáðó ç
íåêîìóòàòèâíiñòþ êîîðäèíàò êàíîíi÷íîãî òèïó, ÿêà îïèñó¹ ïðîñòið iç ìiíiìàëüíîþ äîâæèíîþ (êâàí-
òîâàíèé ïðîñòið) òà áóëà çàïðîïîíîâàíà â ðîáîòi [Kh. P. Gnatenko, M. I. Samar, V. M. Tkachuk, Phys.
Rev. A 99, 012114 (2019)]. Àë åáðà õàðàêòåðèçó¹òüñÿ òåíçîðîì íåêîìóòàòèâíîñòi, ïîáóäîâàíèì çà
äîïîìîãîþ äîäàòêîâèõ iìïóëüñiâ. Îñòàííi âiäïîâiäàþòü ñôåðè÷íî-ñèìåòðè÷íié ñèñòåìi. Ðîçãëÿíóòî
âèïàäîê, êîëè öÿ ñèñòåìà � öå ãàðìîíi÷íèé îñöèëÿòîð iç äîâæèíîþ, ùî äîðiâíþ¹ äîâæèíi Ïëàíêà,
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òà âåëèêîþ ÷àñòîòîþ. Äîñëiäæåíî ÷àñòèíêó â îäíîðiäíîìó ïîëi ó êâàíòîâàíîìó ïðîñòîði çi çáåðå-
æåíîþ ñèìåòði¹þ âiäíîñíî iíâåðñi¨ ÷àñó òà ñôåðè÷íîþ ñèìåòði¹þ. Ìè ïîáóäóâàëè òà ïðîàíàëiçóâàëè
ïîâíèé ãàìiëüòîíiàí ÷àñòèíêè â îäíîðiäíîìó ïîëi. Âèêîðèñòàâøè ìåòîä çîáðàæåííÿ íåêîìóòàòèâ-
íèõ êîîðäèíàò ÷åðåç êîîðäèíàòè òà iìïóëüñè, ÿêi çàäîâîëüíÿþòü çâè÷íi êîìóòàöiéíi ñïiââiäíîøåííÿ,
ìè çíàéøëè òî÷íèé âèðàç äëÿ åíåð i¨ òà õâèëüîâèõ ôóíêöié ÷àñòèíêè â îäíîðiäíîìó ïîëi. Ó ñòàòòi
ïîêàçàíî, ùî ðóõ ÷àñòèíêè â íàïðÿìêó îäíîðiäíîãî ïîëÿ ó ñôåðè÷íî-ñèìåòðè÷íîìó òà iíâàðiàí-
òíîìó âiäíîñíî iíâåðñi¨ ÷àñó ïðîñòîði ç íåêîìóòàòèâíiñòþ êîîðäèíàò ¹ òàêèì ñàìèì, ÿê ó çâè÷íîìó
ïðîñòîði. Íåêîìóòàòèâíiñòü êîîðäèíàò âïëèâà¹ òiëüêè íà ðóõ ÷àñòèíêè â íàïðÿìêàõ, ïåðïåíäèêó-
ëÿðíèõ äî ïîëÿ. À ñàìå: êâàíòîâàíiñòü ïðîñòîðó âïëèâà¹ íà ìàñó ÷àñòèíêè.

Êëþ÷îâi ñëîâà: êâàíòîâàíèé ïðîñòið, íåêîìóòàòèâíi êîîðäèíàòè, ñèìåòðiÿ âiäíîñíî iíâåðñi¨
÷àñó, ñôåðè÷íà ñèìåòðiÿ, ÷àñòèíêà â îäíîðiäíîìó ïîëi.
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