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The paper studies quantized space described by a time reversal invariant and rotationally invariant
noncommutative algebra of a canonical type. A particle in a uniform field is considered. We find
exactly the energy of a particle in a uniform field in the quantized space and its wavefunctions.
It is shown that the motion of the particle in the field direction in time reversal invariant and
rotationally invariant noncommutative space is the same as in an ordinary space (a space with the
ordinary commutation relations for the operators of coordinates and the operators of momenta).
The noncommutativity of the coordinates has an influence only on the motion of the particle in the
directions perpendicular to the field direction. Namely, space quantization has an effect on the mass

of the particle.
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I. INTRODUCTION

According to the String theory and Quantum gravity,
a minimal length of the order of the Planck length exists
[1, 2]. A space with the minimal length can be descri-
bed on the basis of the idea of the deformation of the
commutation relations for operators of coordinates and
operators of momenta.

Many different deformed algebras leading to the mi-
nimal length were proposed. One can distinguish three
types of the algebras: noncommutative algebras of the
canonical type (see, for instance, [3—6]), noncommutati-
ve algebras of the Lie type (see, for instance, [7-9]),
nonlinear deformed algebras (see, for instance, [10-12]).
Noncommutative algebras of a canonical type are the
most simple algebras which describe space quantization
on the Planck scale. An algebra with the noncommutati-
vity of coordinates of canonical type is characterized by
the following relations

[XZ-, Xj] = ih@ij7 (1)
[Xi, Pj] = ihdij, (2)
[P, P;] = 0. (3)

Here 60;; are called parameters of noncommutativity whi-
ch are elements of constant matrixes. Contrary to di-
mensionless 6;; in (2), parameters 6;; are dimensionful,
9;; in (1) has the dimension of squared length. Properti-
es of physical systems within the frame of noncommutati-
ve algebra of a canonical type have been widely studied
(see, for instance, [3-6, 13-19|, and references therein).
Among the problems, a noncommutative gravitational
quantum well has been examined [14, 18, 19]. It is worth
stressing that in a noncommutative space characterized
by commutation relations (1)-(3), the rotational and
time reversal symmetries are not preserved [5, 20-22].
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In [23] a noncommutative algebra which is rotationally
invariant and equivalent to a noncommutative algebra
of a canonical type was proposed. In [24] the effect of
noncommutativity on the mass of a particle in a uni-
form field was found within the frame of the rotationally
invariant noncommutative algebra of a canonical type
[23].

In the present paper, we study a particle in a uni-
form field within the frame of the rotationally invariant
and time reversal invariant noncommutative algebra of a
canonical type proposed in [22]. The total Hamiltonian
is constructed and analyzed. We find exactly the energy
and wave functions of a particle in a uniform field in
a noncommutative space with preserved rotational and
time reversal symmetries.

The paper is organized as follows. In Section 2, a ti-
me reversal and rotationally invariant algebra with the
noncommutativity of coordinates is presented. Section
3 is devoted to the studies of a particle in uniform fi-
eld in rotationally invariant and time reversal invari-
ant noncommutative space. Conclusions are presented in
Section 4.

II. TIME REVERSAL AND ROTATIONALLY
INVARIANT ALGEBRA WITH THE
CANONICAL NONCOMMUTATIVITY OF
COORDINATES

In [22] for preserving rotational and time reversal
symmetries in a noncommutative space, the authors
considered the idea to generalize parameters of
noncommutativity, defining the tensor of the coordinate
noncommutativity as

Co a
0;; = i Zé‘z‘jkpka (4)
k
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here p¢ are additional momenta governed by a rotati-
onally invariant system, cy is a constant. For simplici-
ty, in [22] the additional momenta were assumed to be
governed by the harmonic oscillator
a\2
T
2Mosc 2

2 2
MoscWogc@

()

Here a; are additional coordinates conjugated to
momenta p¢. The following relations are satisfied

[ai,p?] = ih&ij, (6)
[ai, a;] = [pi', p§] = 0. (7)

The oscillator length is considered to be equal to the
Planck length \/ﬁ/ VMoscWose = Ip and the frequency of
the oscillator is assumed to be very large [22]. So, the
harmonic oscillator (5) remains in the ground state.

The time reversal and rotationally invariant algebra
with the canonical noncommutativity of coordinates
reads

[ X3, Xj) = ico Y cajnpf, (8)
k

[Xi, Pj] = ihdiz, [P, Pj] =0, 9)

?vXj}: ?ij}:O' (10)

It is convenient to represent coordinates and momenta
which satisfy (8), (9) by coordinates and momenta x;, p;
satisfying the ordinary commutation relations

[2i, 2] = [pi, ps] = 0, (11)

The representation is
1

here 6 = (61, 65,03),

copy
o

From relation (10) it follows that algebra (8),
(9) is equivalent to the algebra with the canonical
noncommutativity of coordinates. Relations (8), (9) are
invariant under the time reversal transformation whi-
ch includes a complex conjugation. Also, after this

6; = (14)

J

transformation, the coordinates and the momenta change
as X; — X;, B, — =P, p¢ — —p?. Algebra (8), (9) is
time reversal invariant [22]. After rotation, the coordi-
nates and momenta change as X! = U(p)X;UT(y),
Pl = Ulp)PU*(p) pf' = Ue)piU"(¢), Ulp) =
exp(i¢(n-L*)/h) with L* = [xx p]+[ax p?]. Commutati-
on relations (8), (9) are invariant under rotation, the
algebra is rotationally invariant [22].

In the next section, we study a particle in a uniform
field within the frame of a rotationally invariant and time
reversal invariant noncommutative algebra (8), (9).

III. ENERGY OF A PARTICLE IN A UNIFORM
FIELD IN A ROTATIONALLY INVARIANT AND
TIME REVERSAL INVARIANT
NONCOMMUTATIVE SPACE

Let us study a particle with mass m in uniform field
with the following Hamiltonian

In (15) the coordinates and momenta satisfy relations
(8), (9). Without loss of generality, for convenience we
consider the field pointed in the X3 direction (in (15)
a characterizes the force acting on the particle). For
instance, for a particle in a uniform gravitational field g
with the direction along the X3 axis, we have a = —mg.
In the case of a charged particle in a uniform electric field
E with the direction along the X3 axis, the parameter
«a reads o = —qF, where ¢ is the charge of the parti-
cle. Because algebra (8), (9) is rotationally invariant, the
results of this section can be generalized to the case of
an arbitrary direction of the field.

To construct a time reversal invariant and rotationally
invariant noncommutative algebra (8), (9) additional
momenta p§ were involved, therefore, to study a particle
in a uniform field in the space (8), (9) one should write
the following Hamiltonian

2

p2 P92 Mosewl.a
H="_ax 1
om Xt 5 (16)

the last two terms where correspond to harmonic osci-
llator (5). Then, to find the influence of the space quanti-
zation on the energy of a particle in a uniform field, it is
convenient to use representation (13) and rewrite Hami-
ltonian (16) as follows

2 a\2 2 2
H = pf — Xy — g[e X p]3 + (p ) MoscWosc @
2m 2 2Mgsc 2
2 a2 2 2
D acy 4 a (p ) MoscWosc @
= o —oms — o (Bipe —pip1) + 17
5 T3~ o (pip2 — pap1) S + 5 (17)

Here we take into account (14).
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To find the exact expression for the energy of a particle in a uniform field in a space described by commutation

relations (8), (9), we rewrite Hamiltonian (17) as

g (1 a?eimmese i (i a?eimmeose ﬁ n ﬁ o
4h? 2m 4h? 2m ' 2m ’
1 o QCHMosc )2 1 ( o . 0CeMose )2
R (pl on P2) Fom, P2t o
+ (pg)z + moscw?)sca% + mOSngsca% + moscwzscag (18)
2Mosc 2 2 2 ’
Note that operators
2.2 2 2.2 2 2
~ a‘cgm '\ p3 a‘cgm \ ps D3
H=(1-—071 |2t 1——10 )22 4 58 19
P ( 471%5611%) om < 4hwosczl%) om ' 2m Y (19)
and
2 2
- 1 acy 1 Qacy
Hose = Py — P2> + (pa + pl)
% 2’rnosc ( ! 2woscll23 2Tnosc 2 2w0$0112:>
(P5)? | MoscWigc@ | MoseWoscls | MoscWasc(3
+ + - : (20)
2Mosc 2 2 2
[
in (18) commute Here we would like to mention that according to (28),
o the effective mass meg is positive if azcgm/élhwoscl% <
[Hp, Hosc] = 0. (21) 1. Let us analyze this inequality. Assuming that the

Writing (19), (20) we take into account that

h
— =lp,
MoscWosc

as was assumed in the paper [22], where the
noncommutative algebra invariant upon time reversal
and rotationally invariant was constructed.

Operator I:Ip can be rewritten as

(22)

H, = H, + Hy + Hs, (23)
with
2
- P1
H; = 24
! 2meﬁ‘ ( )
2
- P2
Hy = 25
2= 5 (25)
~ 2
2= oo —aas, (26)
[Hi,Hs] = [Hy, H3] = [Hy, H3] =0 (27)
The effective mass reads
a?eimmese -t
Meg = MM 1-— T
a2c2m \ 1
= 1-—2— . 28
" ( 4hwoscl%> (28)

minimal length for an electron is the Planck length,
we have ¢y = 2I3/3h. To write this expression, we
take into account that the minimal length is as follows
v 352<92>/\4@, where <92> = Eiw&o,o 91'2|¢(()L,0,0> =
3cg /213, UG o is eigenfunction of harmonic oscillator (5)
in the ground state (see [26]). Note that woes. is assumed
to be very large |22]. Considering wese = 1/tp (tp is
the Planck time), m = me (m, is the mass of electron)
the inequality can be rewritten as a?m./9F2mp < 1,
here Fp is the Planck force, mp is the Planck mass.
Note that this inequality is violated for very large a,
a > 3Fp/mp/\/mc = 5,6 - 10°°H. In this case, the one
particle theory does not work. Therefore, it has to be
studied separately.

The operator of coordinate x3 and the operator of
momentum p3 in Hy satisfy the ordinary commutation
relations (11), (12). So, Hs corresponds to the Hami-
ltonian of a particle in a uniform field in the ordinary
space (in a space where the operators of coordinates and
operators of momenta satisfy the ordinary commutation
relations).

Introducing
- QcCy
a — a v 29
Pr=pi— 5 — Z P2, (29)
~a a QcCy
= —_——— 30
Py =5+ BBV (30)
p§ = ps, (31)
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one can write (20) as
2

Iy (ﬁa ) 2 mOSCwQ a
Hose = osc | 32
2Mosc * 2 ( )

Operators a; and p¢ satisfy the ordinary commutation
relations

[ai7aj] = ~g7ﬁ?] =0, (33)
[ai, ] = ihdij, (34)

Therefore operator (32) corresponds to the Hamiltoni-
an of a three-dimensional harmonic oscillator with mass
mese and frequency wese in the ordinary space. The
spectrum of the oscillator in the ordinary space is well
known. Let us recall that the frequency wogc is very large
[22], and the oscillator put in the ground state remains
in it. So, the oscillator energy is 3hwosc/2.

Operators fil, Hg, fIg, H,s commute with each other
(see (21), (27)). So, the spectrum of a particle in a uni-
form field in a rotationally invariant and time reversal
invariant noncommutative space reads

h2k? 1 a’cim +h2k‘§ 1 a’cim
2m 4hwoscll% 2m 4ﬁwoscl123

3
+ Ed + 577'0‘}05(:' (35)

E =

Note that the motion of a particle in the directions
perpendicular to the field direction is free. In (35), ki,
ko denote the components of the wave vector which
correspond to this motion, E3 denotes continious ei-
genvalues of Hs. The last term in (35) corresponds to
the ground state energy of the harmonic oscillator (32).

Let us also write the eigenfunctions of the total Hami-
ltonian (18). Because relations (21), (27) are satisfied, we
can write

P(x,a) = 1 (1) (22)3(23) (), (36)

where v);(z;) are eigenfunctions of H; given by (24)-(26).
Note that 1) (z3) is the eigenfunction of a particle in a
uniform field in the ordinary space, which is well known
(see, for instance, [27]). It reads

00 = (o) o ((22) (oo 2) o0

here ® is the Airy function

O(x) = % /000 cos (t; + tx) dt. (38)

Functions ¢ (a) in (36) are eigenfunctions of

I R - acehks
o8¢ 2Mgsce ! 2Woscll%
2
1 acghk )2
+<p%+ ? ;) L p8)
2Mgsc 2Wosclp 2Meosc
+ moscw?)sca% + moschsca% + moscwzscag. (39)

2 2 2
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Hamiltonian (39) was obtained by replacing p; and po
with hky, hks, respectively, in (20). The eigenfunction of
(39) corresponding to the ground state reads

~ 1 —Li—iﬁ(kla2—k2al)
Y(a) = ——e P : (40)
T3
Here for convenience we use the following notation
QcCo
= —— 41
B Yool (41)

So, we can write the eigenfunctions of the total Hami-
ltonian (18). They read

P(x,a) = Cethrorgikar: (42)

2 % E *ifi kias—koa
() (o D))

where C is the normalization constant.

Let us analyze the obtained results. It is important
to note that the features of the space structure on the
Planck scale have an effect only on the motion of a parti-
cle in the directions perpendicular to the direction of the
field. The first two terms in (35) can be rewritten usi-
ng effective mass (28). So, the space quantization has an
effect on the mass of the particle in a uniform field in a
rotationally invariant and time reversal invariant space
with the noncommutativity of coordinates.

CONCLUSION

In the paper, we have considered an algebra with the
noncommutativity of coordinates which is rotationally
and time reversal invariant (8), (9). This algebra descri-
bes space quantization at the Planck scale. The influence
of space quantization on the motion of a particle in a uni-
form field has been studied. Taking into account that
the rotationally invariant and time reversal invariant
noncommutative algebra contains additional momenta,
we have constructed and examined a total Hamiltonian
of a particle in a uniform field in a time reversal invari-
ant and rotationally invariant noncommutative space
(16). The energy and wave functions of the particle
have been found exactly (35), (43). We obtain that the
motion of a particle in the field direction in a rotati-
onally and time-reversal invariant noncommutative space
is the same as in a space with ordinary commutation
relations for operators of coordinates and operators of
momenta. Features of the space structure described by
noncommutative algebra (8), (9) have an effect on the
motion of a particle in the directions perpendicular to
the field direction. Similarly as in the ordinary space,
the motion of a particle in these directions is free. The
noncommutativity has only an effect on the particle
mass.
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YACTUMHKA B OJHOPIAHOMY IIOJII B HEKOMYTATMUBHOMY IIPOCTOPI
31 3BBEPEXKEHOI CUMETPICIO BIJTHOCHO IHBEPCIIi YACY TA C®EPUYHOIK CUMETPIECIO

X. II. Tuarenko, X. I. Craxyp, A. B. Kpuxosa
Jveiecorutl Hayionarvhull yrnisepcumem iment Ieana Ppanka, xapedpa meopemuunoi gizurxu,
eya. Jpazomanosa, 12, 79005 Jlveis, Yxpaina

Bugueno BB KBAHTOBAHOCTI TMPOCTOPY HA PyX YACTHHKH B OAHOpimHOMY mmoui. s ommcy oco-
6mBOCTEHl CTPYKTYPHU HPOCTOPY HA ILUIAHKIBCHKMX MACIITA0AX TA BPAXyBaHHS KBAHTOBAHOCTI IIPOCTOPY
PO3MISHYTO imero JedopMaliii 3BUYHIX KOMYTaIIiHUX CHiBBIIHONIEHS JIJIsl ONepaTopiB KoopauHaT. A came:
MIPUIYCKAETHCH, 110 KOMYTATOP KOOD/INHAT HE JOPiBHIOE HyJIEBi. ¥ JiiTepaTypi BiIoMO 6araro pi3HUX THUIIIB
nedopmariiit 3BUIHIX KOMYTAIiHAX CIIiBBiIHOINEHD I OIIEPATOPiB KOOPAMHAT Ta iMiyabciB. HaitpocTi-
LIOI0 TA HANOLIBII BUBYEHOIO € ajiredpa 3 HEKOMYTATUBHICTIO KOOPAMHAT KAHOHIYHOIO Tuily. Bona omnucye
KBAHTOBAHUH MPOCTIp, aJi€ 3yMOBJIIOE TIOPYIIIEHHS CUMETPIl BiTHOCHO iHBEpCIT 9acy, mopyIieHHs chepuaHol
cumerpii. ¥ cTaTTi JOCTiIKeHO iHBapiaHTHY BiAHOCHO iHBepCil Yacy Ta chepudaHO-CHMEeTPUYHY anredpy 3
HEKOMYTATUBHICTIO KOODMHAT KAHOHIYHOIO THILY, SIK& OLKUCYE HPOCTIP i3 MiHIMAJIbHOIO IOBXKMHOIO (KBaH-
ToBaHWi mMpocTip) Ta Gysa 3ampononorana B pobori [Kh. P. Gnatenko, M. I. Samar, V. M. Tkachuk, Phys.
Rev. A 99, 012114 (2019)]. Anre6pa XapakTepu3yeThCs TEH30POM HEKOMYTATHBHOCTI, TOOYJOBAHUM 34
JIOTIOMOT0I0 JIOAATKOBUX iMIynbciB. Ocranni BiANOBi1al0Th chepuaHO-cuMeTpudHiii cucremi. Po3risnyTo
BUITAI0K, KOJIH 15T CHCTEMAa — € TAPMOHIYHHUI OCIIUIATOP i3 JOBKHUHOIO, IO JOPIiBHIOE noBxKuHi Il1anka,
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Kh. P. GNATENKO, Kh. I. STAKHUR, A. V. KRYZHOVA

Ta BEJIUKOK YaCTOTOK. JIOCTiIKEHO YaCTUHKY B OZHOPIIHOMY MOJi Y KBAHTOBAHOMY MTPOCTOpI 3i 36epe-
JKEHOI0 CHMETPIEI0 BiHOCHO iHBepCii gacy Ta chepuaHo cumerpieio. Mu mo0yayBain Ta mpoaHa i3y BaIu
MMOBHUI TaMLTbTOHIAH YACTHHKHM B OJHOPIAHOMY moji. Bukopucrasmm MeTom 300paskeHHsT HEeKOMYTAaTHB-
HUX KOOPJIMHAT Yepe3 KOOPIMHATH Ta iMITYJIbCH, SKi 33/ J0BOJIbHAIOTH 3BUYHI KOMYTalIifiHi CIIiBBlIHOIIIEHHS,
MU 3HANMIN TOYHUN BUPA3 I €Hepril Ta XBUIbOBUX (DYHKINM YACTHHKYU B OIHOPIAHOMY mOi. Y cTarTTi
MTOKA3aHO, 0 PyX YaCTUHKH B HANPAMKY OJHOPIIHOTO MOjd y ChepuaHO-CHMETPpUYHOMY Ta iHBapiaH-
THOMY BiJIHOCHO iHBepCil 4acy mpocTOpi 3 HEKOMYTATUBHICTIO KOOPJAWHAT € TAKUM CAMUM, K Y 3BUYHOMY
npocropi. HekomyTaruBHicTh KOODAMHAT BILIMBAE TLIHKU HA PyX YaCTHHKHU B HANPAMKAX, IIEPIIEH/IAKY-
JISPHUX 710 TOJIsA. A caMe: KBAHTOBAHICTH MPOCTOPY BILJINBAE HA MACy YaCTUHKH.

Kurro4oBi cisioBa: KBaHTOBAHWI MPOCTIP, HEKOMYTATWBHI KOODAWHATH, CUMETpPis BiJIHOCHO iHBepCil
qacy, chepraHa CUMEeTPisi, 9aCTUHKA B OTHOPITHOMY IIOJI.
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