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This paper studies, the generation of magnetic fields in a nonuniformly rotating layer of finite
thickness of an electrically conducting fluid by thermomagnetic (TM) instability. This instability
arises due to the temperature gradient V7p and thermoelectromotive coefficient gradient Va. The
influence of the generation of a toroidal magnetic field by TM instability on the convective instability
in a nonuniformly rotating layer of an electrically conductive fluid in the presence of a vertical
constant magnetic field Bo|/OZ is established. By applying the method of perturbation theory for
the small parameter ¢ = y/(Ra — Ra.)/Ra. of the supercriticality of the stationary Rayleigh number
Rac, a nonlinear equation of the Ginzburg-Landau type was obtained. This equation describes the
evolution of the finite amplitude of perturbations. Numerical solutions of this equation made it
possible to determine the heat transfer in the fluid layer with and without TM effects. It is shown
that the amplitude of the stationary toroidal magnetic field noticeably increases with allowance for
TM effects.
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I. INTRODUCTION

Magnetic fields in the Universe are observed an vari-
ous cosmological scales from small planets to galaxi-
es. The question of the origin of magnetic fields in
various astrophysical objects is dealt with by the
dynamo theory, which was developed as an independent
section of magnetohydrodynamics. Initailly, the term
“dynamo” was coined by Sir Larmor [1]. In his opinion,
the hydrodynamic motion of an electroconductive fluid
can generate a magnetic field by acting as a dynamo.
In the modern sense, the dynamo mechanism represents
the generation of a large-scale magnetic field due to the
combined action of the differential (nonuniform) rotation
of an astrophysical object and the mirror asymmetry of
turbulent or convective flows. The topological characteri-
stic of such flows is helicity J; = vrotv, which is a
measure of the knottedness of vortex field force lines [2].
The generation of the mean field occurs under the action
of a turbulent e.m.f. proportional to the mean magnetic
field £ = apH. The coefficient a4, is proportional to the
average helicity of the velocity field ay, ~ vrotv and it
is called the a-effect in the literature [3]. The large-scale
generation is usually called of-dynamo in the absence
of differential rotation, and it is called ay$2-dynamo in
the presence of the rotation. The most developed at the
moment is the dynamo theory in the kinematic formulati-
on [2-10].

Of no less importance are issues related to the self-
excitation of magnetic fields by external e.m.f. As shown
by Schliiter and Biermann [11], the inhomogeneity of
the chemical composition of a space object can lead to
non-parallelism of the gradients of the electron pressure
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Vpe and electron concentration Vn.. The result is a
“battery” electric field E() = (1/en.)Vp., which leads
to the excitation of magnetic fields 9B/dt ~ rot E("),
Such a mechanism is associated with the generation
of initial magnetic fields, which at some moment were
completely absent. In this case, it is not always rightly
assumed that only weak initial fields arise [4], which
are necessary to turn on the dynamo. Numerical esti-
mates carried out in [12] showed that the magnetic fields
of the Earth and planets are created by thermoelectric
currents that flow in a highly conductive region inside the
planet. The temperature gradients V7T and the gradient
of the thermoelectromotive force coefficient Vo must be
directed at an angle to each other. Then, the magnetic
field is excited OB/t ~ [VT x Va] by analogy with
the “battery” effect of Biermann—Schliiter because of the
non-parallelism of the vectors V1" and Va. In the work
[12] it is noted that Braginsky’s conclusion [17] about
the insignificance of thermopower in the Earth’s core is
unfounded. In [13] it was assumed that the temperature
gradient and the gradient of the thermoelectromotive
force coeflicient are parallel [VT x Va] = 0. However, as
shown in this paper, under the condition [V7Ty x Va] =0
the generation of magnetic fields is also possible due to
the development of thermomagnetic instability (TMI).
Thus, there are no contradictions with the Braginsky
dynamo in this case.

Astrophysical applications of TMI are discussed in
detail in review [14], where an explanation of the
appearance of strong magnetic fields in the cores of white
dwarfs, binary systems, and neutron stars is given. In a
recent paper [15], the generation of a magnetic field by
TMI in the surface layers (hot plasma) of massive stars
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was considered. Such generation is possible in the upper
layers of the atmosphere of hot stars, where deviations
from local thermodynamic equilibrium form a region wi-
th an inverse temperature gradient. In [15], the case of
the generation of only small-scale magnetic fields with
horizontal wavelengths A = 27/k, much smaller than the
characteristic scale L of unperturbed quantities A\ < L
was considered. Thus, TMI is an alternative mechanism
of the origin of magnetic fields in various astrophysical
objects along with the existing theories of the turbulent
[2-10] and convective dynamo [16].

In some recent works [17-19], the TMI in nonuniformly
rotating plasma media (hot galactic disks, accretion di-
sks) in an external axial magnetic field was considered.
These papers present an analysis of the linear stabi-
lity of ionized hot disks with a temperature gradient
and an external axial magnetic field. Earlier, Gurevich
and Helmont [20] studied the destabilizing effect of the
temperature gradient on the propagation of Alfven waves
in astrophysical plasma in the absence of a hydrodynamic
motion. As shown in [17-19], the hydromagnetic and
thermomagnetic effects associated with the Nernst effect
can lead to the amplification of waves and make disks
unstable. The regimes under which both thermomagnetic
and magnetorotational instabilities (MRI) can operate
were discussed. MRI arises when a weak axial magnetic
field destabilizes the azimuthal differential rotation of
the plasma, and when the condition d?/dR < 0 for the
case of a nondissipative plasma is satisfied [21]. Since this
condition is also satisfied for Keplerian flows Q ~ R=3/2
the MRI is the most likely source of turbulence in accreti-
on disks [22]. It was noted in [19] that even in the absence
of MRI, TMI due to the Nernst effect is a good candidate
for ensuring the onset of turbulence in disks.

Unlike papers [15, 17-19], in this paper we studi-
ed the spontaneous generation of a magnetic field by
TMI in a nonuniformly rotating layer of an electri-
cally conducting fluid in the presence of an external
constant axial magnetic field. Here TMI is due to the
collinear temperature gradient and the gradient of the
thermoelectromotive force coefficient. This work is a
continuation of the research begun in [23], where the
problem of the stability of an electrically conducting
fluid between two rotating cylinders (Couette flow) and
the Rayleigh-Benard problem in an external constant
magnetic field were considered. In contrast to [23],
we studied the influence of TM effects on convecti-
ve processes, as well as the weakly nonlinear evoluti-
on of the toroidal magnetic field generated by TMI.
The work consists of the following sections. Secti-
on I (Introduction) gives a brief overview of the main
problems of modern dynamo theory. In Section II, the
basic equations of magnetohydrodynamics taking into
account thermomagnetic phenomena in the Boussinesq
approximation are obtained. These equations descri-
be the generation of magnetic fields in a nonuni-
formly rotating electrically conducting fluid in a constant
magnetic field. In Section III, the stationary magnetic
convection (the Rayleigh-Benard problem) in a nonuni-
formly rotating liquid layer is considered, where a toroi-
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dal magnetic field is generated due to the temperature
difference and specific thermopower at the layer bound-
aries. In Section IV, we investigated the weakly nonli-
near stage of a stationary inhomogeneously rotating
magnetic convection taking into account TM effects.
We obtained the nonlinear Ginzburg—Landau equation
applying the method of perturbation theory in the small
parameter of the supercriticality of the Rayleigh number

(Ra — Ra.)/Ra,. In the last Section V (Conclusi-
on) we presented the main results obtained in the work.

II. STATEMENT OF THE PROBLEM AND
EQUATIONS OF THE EVOLUTION OF SMALL
PERTURBATIONS

Let us consider the following problem statement.
Let us asume that a nonuniformly rotating electrically
conducting fluid (for example, liquid metal or plasma) is
in a constant gravitational g and magnetic field By at a
constant vertical temperature gradient VI = const =
—Ae (A > 0) is a constant gradient, e is a unit vector
directed vertically upward along the axis) and a gradi-
ent of the thermoelectromotive force coefficient Vo || e.
In the model considered here, we assume that the gradi-
ent of the specific thermoelectric power is associated wi-
th the inhomogeneity of the chemical composition of
the conducting liquid. In this model, we assume that
the gradient of the thermoelectromotive force coefficient
Va is associated with the inhomogeneity of the chemi-
cal composition of the conducting fluid. It is known
that expressions for Ohm’s law and heat flux q in the
presence of a magnetic field B and a temperature gradi-
ent VT are modified taking into account thermomagnetic
phenomena [24]:

E+[V x B] :i+aVT+R[B % j] + N[B x VT, (1)

q—¢j=—-cVT+aTj+NTB x jl+ LB x VT], (2)

where R,N,L are the Hall, Nernst, and Leduc-
Righi coefficients, respectively; ¢ — electrical potenti-
al. In expressions (1)—(2), we neglected the anisotropy
of the coefficients of electrical conductivity o =
o, = o, thermal conductivity k| ~ k1 = K, and
thermoelectromotive force ap R o =« due to the
weakness of the external magnetic field By because the
parameter is small 3 = B3 /2uPy < 1 ( Py is the stati-
onary pressure of the fluid, u is the coefficient of magnetic
permeability). By applying the operation rot to Ohm’s
law (1), we obtain the equation for the magnetic field
induction B. After the substitution of expression (2) into
the heat balance equation

dr

PoCp oy = —divaq,

let us write the equations of magnetohydrodynamics for
a viscous incompressible fluid in the Boussinesq approxi-
mation taking into account thermomagnetic phenomena:
oV

N owvoove-tv(p+B) i Ln.vs
ot  po 2p

+ egfBrT + VV2V, (3)
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%? + (V-V)B- (B-V)V =V?B — [Va x VT

— Erot[B x rotB] — Nrot[B x VT7, (4)

I

T 1
o | («v.v)yr=-—
PoCp

ot
+ NT[B x j]+ LB x VT]),

22
div( — kVT + L + aTj
g

(5)

divB =0, divV =0, (6)
where S is the coefficient of thermal expansion, py =
const, is the density of the medium, v is the coeffici-
ent of kinematic viscosity, n = 1/uo is the coefficient
of magnetic viscosity. Equation (4) contains a source
of excitation of a magnetic field of non-electromagnetic
nature [Va x VT, which is an analog of the “battery”
Biermann—Schliiter effect in the plasma. The drift of
the lines of force of the magnetic field in equation
(4) is associated not only with the movement of the
fluid V but also with the heat flux where the rate
of thermal drift is equal to: Vo = NVT. The drift
of the magnetic field due to the Nernst effect contri-
butes to its penetration to a large area of the medium.
Let us estimate the excited magnetic field in the stati-
onary regime without taking into account the drift of
the field and the Hall effect. Then from (4) for the ¢-
component of the (toroidal) magnetic field, we obtain:
By ~ oTpo(Lp/La), where Lp is the characteristic
scale of the excited magnetic field, L, is the characteri-
stic scale of the medium inhomogeneity. Substituting
the values of the parameters of the fluid Earth’s core:
ol = 1072 V (at temperature T = 1000 K) [12],
p=4r-1077" V-s/A-m, o = 3-10° (V-m/A)~1! |6] for the
ratio of scales (Lp/L,) = 10%, we obtain an estimated
value of the toroidal magnetic field of the Earth’s core
By = 10~ T, which coincides in order of magnitude

with the data from monograph [25].

J

Let us investigate the possibility of generating a
magnetic field as a consequence of the development of
TM instability by presenting all quantities in equations
(3)—(6) as the sum of the stationary and perturbed parts
V=Vyg+u B=By+b,P=Py+p, T =T,+6. Here
we assume that the stationary rotation velocity of the
fluid has an azimuthal direction Vy = RQ(R)ey. The
angular velocity of rotation Q(R) is directed vertically
upward along the axis OZ. The homogeneous (constant)
magnetic field Bg||€2 is also directed along the axis OZ:
By = (0,0, By). Further, the magnetic field By will be
called axial in the cylindrical coordinate system (R, ¢, z).
The stationary state of the system of equations (3)—(6)
is described by the following equations:

1dP, 1 dP, d*Ty
MPr=-"9 7% _ 37, -0
R 0 dR’ 00 dz gﬁT 0 dz2 0 (7)
d
B()@Q(R)R = [Va X VTO]¢ =0. (8)

Equations (8) show that centrifugal equilibrium is
established in the radial direction, and hydrostatic equi-
librium in the vertical direction. From equation (8) it
follows that the thermoelectromotive coefficient o has a
constant value in the radial direction: dor/dR = 0, then
it can have a dependence on the coordinates (¢, z). If we
consider the distribution of the chemical composition of
the medium to be axisymmetric, then the condition is
satisfied: da/dz # 0. In this case, the condition of colli-
nearity of vectors is also satisfied [Vax V1] = 0, and the
gradients Va and VT can be both parallel to each other
Va 11 VTy and antiparallel: Va 1) V1. The evolution
equations for the perturbed quantities (u, b, p, ) against
the background of a stationary state take the following
form:

Ju 1 1 1

= . . - B BH2

ot +(V0 V)u—i—(u V)VO pov(p+ﬂ 0b+21ub )

1
+ —(Bo- V)b + gfBrbe + vV?*u+ R{),
Pott

b ) R
E + (VO . V)b — (BO . V)u — (b : V)VQ = nV b — [VOL X VG] — EI‘Ot[BO X rot b]

00
—+

div b =0,

Nrot([By x V8] + [b x VTy]) + RE

V260 —

OéT()
PoCplt

NTy
PoCplt

(Ks + Kr)rotb —

div[Bg x rot b]

xadiv([b x VTy] + By x V]) + RS,

divu =0,

2401-3



M. I. KOPP, K. N. KULIK, A. V. TUR, V. V. YANOVSKY

(1) p(2)

where the nonlinear terms Ry, Ry;,, Rl(\?}z are equal respectively:

1
RY = —(u-V)u+ —(b-V)b,
NL (u-V) pou( )

(3)
Ry, = —(u-V)§—
NL ( ) ool

(VO 4+ 0Va)rotb —

A%L:Gwa%wvm—%mmxmﬂ—Nm%xV%

(VT - [b x rot b]
PoCplt

+ VO -[(Bg+b) x rot b] + (Tp + 6)div[b x rot b] + 6 div[Bg x rot b]) — x div[b x V).

In equations (9) new introduced designations K, =
Va/a,Kr = VTy/Ty are scales of inhomogeneity of
the medium L, = |K,.| %Ly = K™% xa =
L/pocy is the skewed coefficient of thermal diffusivity.
The system of equations (9) is quite complicated for a
complete analysis. Next, we consider the evolution of
small perturbations by linearizing Eqgs. (9). Then we
can neglect nonlinear terms. The generation of magnetic
fields arises due to the effects associated with the
inhomogeneity of the thermoelectromotive force coeffi-
cient and magnetization of the heat flux (Leduc—Righi
effect). Thus, in equation (9), we restrict ourselves to
only taking these effects into account. We will consi-
der the evolution of axisymmetric perturbations, i.e.
independent of the azimuthal angle ¢ (9/0¢ = 0), and
we apply the local WKB method for equations (9) for
small perturbations that depend on radial coordinates
R. For this purpose, we expand all quantities in a Taylor
series in the vicinity of fixed points Ry leaving the terms
of order zero in local coordinates R = R — Ry. As a
result, we obtain a system of differential equations with
constant coefficients. All perturbations in this system of
equations are represented in the form of plane waves

(w,5,6,5) = (U(2), H(2), 0(2), P(2) ) exp(t + ikR).
(10)
As a result of simple but cumbersome mathematical
operations, these equations are reduced to one differenti-
al equation for U,:

[511 (G22a33 — A23G32) + Q12 (G2331 — G21033)
+a13 (a21a32 — Az1022) |U. =0, (11)

where Pr = v/x is the Prandtl number, Pm = v/n

is the Prandtl magnetic number, Ta = 492# is the
Boh

Taylor number, Ha = is the Hartman number,

Vo
Ra = gﬁT(}fﬂ is the Rayleigh number, R, = Ano‘g‘OT

is the thermoelectromotive force number, dimensionless

parameter:

Ty B AT A

o oToBo Kﬂﬁ+1)+a}
pocpX(AT) |\ «
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is associated with the influence of the thermoelectromoti-
ve force and Leduc-Righi effects on the heat transfer
process. We use the Chandrasekhar numbers Q = Ha?
and Q = QPm™'Pr instead of the Hartmann number
Ha for convenience. Equation (11) is supplemented with
boundary conditions only in the z-direction

d*U,
Uz = dz?

=0 at z=0 and z=1. (12)
Equation (11) with boundary condition (12) describes
convective phenomena in a thin layer of a nonuniformly
rotating magnetized fluid with thermomagnetic effects.

III. GENERATION OF A MAGNETIC FIELD
BY THERMOMAGNETIC EFFECTS IN A THIN
LAYER OF A NONUNIFORMLY ROTATING
FLUID

Let us consider a stationary flow of a nonuniformly
rotating incompressible viscous electrically conductive
fluid, which is modeled by the Couette—Taylor flow
enclosed between two rotating cylinders with an angular
velocity of rotation Q(R):

R - O, R?

Q1 — Q) R?R2
Q(R)— R%_R% ( 1 2) 112

R*(R3 — RY)

where R; = Rin7R2 = Routh = Qin792 = Qout are
radius and angular velocity of rotation of the inner and
outer cylinders, respectively. The choice of this type of
flow is due to the possibility of realization of the theory
developed here in laboratory experiments. The height
of the cylinders corresponds to a liquid layer of fini-
te thickness h under the condition h < (Rout — Rin)-
The geometry of the problem is shown in Fig. 1. On
the lower plane of the layer, a higher temperature Ty
is supported than on the upper plane Ty: Tq > T, —
the heating from below. The thermoelectromotive force
coefficient ag on the lower (hot) plane is less than on
the upper (cold) plane ay: ag < «y. This situation is
quite possible if we take into account the dependence of
the thermoelectromotive force coefficient on temperature
a ~ /Ty (¢ is the chemical potential) [24]. A spatially
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inhomogeneous distribution inside a layer Ty (z) and «(z)
can be represented as a linear dependence on z:

AT
To(z) = Ta==—2 AT =Ty—Ty, ofz) = aa+ ==z,
Aa = ay — aq.
Y ]_3,0
= QO‘.'I.'(
Ly [ o
H
h \\__/,/ ? >
d e B R
Td ad R!ﬂ Rout
veg

Fig. 1. An electrically conductive fluid fills in a layer
between two rotating cylinders with angular velocities i,
and Qoyut, respectively. The lower surface of the layer has the
temperature T4 and the thermoelectromotive force coefficient
ad, and the upper surface has T, and ay: Ty > Ty, aaq < .
The generated magnetic field has an azimuthal direction Hg.

As is known [26], the temperature difference at the
boundaries of the layer in the gravity field g leads to a
violation of mechanical equilibrium in the system. In this
case, the convective instability develops and convective
cells are formed. Temperature perturbations acting in

J

the radial direction lead to the appearance of a vortex
thermal current due to the difference in the values of
the thermoelectromotive force coefficient Aa(z) at the
layer boundaries. This current induces disturbances of
the azimuthal (toroidal) magnetic field H, (see Fig. 1),
which influences the heat transfer regime. The excited
magnetic field Hy creates heat fluxes directed perpendi-
cular to the field itself and the temperature gradient.
Thus, positive feedback is established: newly arising heat
fluxes create a vortex thermoelectromotive power, which
enhances magnetic field disturbances Hy. Naturally, the
thermomagnetic instability will affect the development
of convective instability. We will consider this issue in
the current section.

A. Dispersion equation for TM perturbations

For simplicity, the solution of equation (11) with
boundary condition (12) will be sought in the form of
a single-mode approximation

U, =Wysinnz, (13)
where W, is a constant amplitude. Substituting (13) into
(11) and integrating over the layer thickness z = (0, 1),
we obtain the dispersion equation

2

T

where Ra(? is the contribution to the dispersion equation
without taking into account TM effects, obtained in [23]:

'y (a’T% + m°Ta(1 + Ro)I'Z + 7*Ha?TaRoPm)

0) _
Ra k2T, T2 ’
2 2 Ta 2
Ra(™) _ qQRaM +qaRa7T - (1+ Ro) + Ra 7mepr Ta,
Ly iy} %
2
2P 2 1 gaRR o Qo PmPr—
A= <1 — ﬁﬂ' Pm“Pr~ RovTa) < T I‘2 > I‘21" I‘2
2 2 qa aT k2Q
x | VTa(l +Ro)I',,(T',T'y — k“gaRa) + m*QPmRov Tal'y, I,Ty T,

where the new notation is introduced
T = (v +a®)(yPm + a?) + m*Ha®, T, = yPr+d’
a? =72 + k2.

Iy =+Pm+ a?,

In the absence of thermal processes, MRI arises in a
nonuniformly rotating layer of an electrically conductive

(

fluid in a constant magnetic field. In this case, equati-

n (14) coincides with the dispersion equation for the
standard MRI (SMRI) taking into account dissipative
processes [27]. The threshold value of the hydrodynamic
Rossby number Ro is determined using the condition
~v = 0 and has the form:

a?(a* 4+ m*Ha?)? + n2a*Ta

Rocr = -
m2Ta(a* + 72Ha’Pm)
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When transforming to dimensional variables rotating fluid, i.e., Rossby number Ro > Ro,. Let us
) ) now analyze a more general case when there is the heati-
m?Ha N w%  7m*Ha”Pm o wi ng of the fluid layer Ra # 0 and its nonuniform rotation
at wywy’ at w% ’ Ro # 0 taking into account the thermomagnetic effects.
Ta 402 2
S 5
a w2’ a
the expression for Ro,, is found [27] B. Stationary convection regime

(W5 + wywy)? + 4820°W2
40282 (w? + w2) ’ Obviously, for the stationary convection mode, the
n . .
increment v is zero (y = 0), therefore, from formula (14)
The criterion for MRI appearance is the condition  we can find the critical value of the Rayleigh number
imposed on the angular velocity profile Q(R) of the  Rag for stationary convection:

Rocr = -

J

-1

2 2 —1
— 0 _ 2 TRy ~ qom*PmPr~v/Ta(l + Ro(1 — Pm))
Rag = Rast —agalla — m (Ta(l + RO)(]Q + Qv Ta)} 1+ e ﬂ-QQ ,
(15)
where
Rag(t)) _a’ n a’*m%Q N 72 Ta . a* + Ro(a* + 72QPm) .

TRk = at + 2Q

The minimum value of the critical Rayleigh number is found from the condition dRas/0k = 0 and corresponds to
the wavenumbers k = k. that satisfy the following equation:

1+ ¢om?PmPr~v/Ta(1 + Ro(1 — Pm))
7+ 2+ 7Q

k3 (72 + 2k2)

272k3(Ta(1 + Ro)Rpy + RaQVTa
M(k:) — R - Rrm - 5
X<( )TN Ty TR T e + ) Q)2
7+ k2) 72 + k2
—I—(( 52 ) — Rpm - K2(m? + k2) + 72 ¢ . 12Q

N 72Ta(1 4+ Ro)((72 + k2)? — k2Rrym) + 7 QPmRoTa — k272R,Qv/Ta
k2((m2 + k2)? + m2Q)?

2k372q, PmPr~tv/Ta(1 + Ro(1 — Pm))
(7 + KD + K + QP

:O’

where Ry = ¢o R, is a dimensionless parameter depending on the temperature the gradient and gradient of the
thermoelectromotive force coefficient. In the limiting case, when TM effects are absent, this equation coincides with
the result of [23]:

M(k,) = 2k% — 72 B 7Q n 2712k, Ta(1 + Ro)
o ke ke(m? 4+ k2)2 (w2 +k2) (72 + k2)% + 72Q)

_ mPTa((r® + k2)* + 7°Q + 2k2 (7 4 k7))
ko((m2 + k2)2 + m2Q)?

B m2TaRo((7? + k2)? + m?QPm)((7? + k2)? 4+ 72Q + 2k2(7% + k2)) 0
ke(m? + k2)2((n2 + k2)% 4+ 72Q)? -
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Let us consider some limiting cases.

1. In the absence of rotation (Ta = 0,Ro = 0) and Ra
magnetic field (By = 0), from expression (15) we st
found
9 o3 1200
Ray, = % — Ryum (k2 + 72). (16)
1000
If the gradient of the thermoelectromotive force
coefficient is zero (the medium is chemically 800
homogeneous), then the well-known result follows )
from (16) Ra™™ = (k2 + 72)3/k2. Here, the mini- Ragi
mum value of the critical Rayleigh number Rag, = :
277% /4 is reached at wavenumber k. = 7/v/2 [26]. 400
The minimum value of the critical e

Rayleigh number Ra™" is calculated by the
formula (16) at k = k., which satisfies the following

relation

6 4 4
2 (%) w3 (%) — 14 (&) R
T 0 T

The numerical value Ra™ in Fig. 2 corresponds
to a point on the neutral curve separating the regi-
ons of stable and unstable disturbances. It can
be seen here that with an increase in the coeffi-
cient the minimum value of the critical Raylei-
gh number decreases, i.e. the threshold for the
development of instability decreases. A numerical
estimate of the coefficient Rty was carried out
for the physical parameters of the Earth’s core:
po ~ 7-10% kg/m? is the density of molten iron,
¢p ~ 835 J/kg- K is specific heat [25] and x = 39
W/m- K is the thermal conductivity coefficient for
iron in the molten state [25]. These parameters give
the value of the thermal diffusivity x = x/poc, =~
6.7 - 1075 m?/s, which turns out to be much less
than the magnetic viscosity coeflicient n = 1/uo =
2.65 m?/s: 7 > x. The value Ry ~ 2 was obtai-
ned for variations of the thermoelectromotive force
coefficient Aa = 3-107* V/K and temperature
AT = 2000 K, and with the increase Ry ~ 20
of the variations of the thermoelectromotive force
coefficient to Aa ~ 1073 V/K.

. If the medium rotates nonuniformly (Ro # 0) but
without an external magnetic field (Bg = 0), then
expression (15) takes the form

k2 2\3 2T
Ry, — . Z;T i ﬂ—kQa(l-i-RO)
’Ta

We also obtained the well-known result [26] for the
case of a non-conductive (¢ = 0) and uniformly
rotating (Ro = 0) medium from expression (17):

(k? + m2)3  72Ta
k2 k?

Rast =

0 1 2 3 4 5 k

Fig. 2. Dependence of the stationary Rayleigh number Ras

on wavenumbers k in the absence of rotation Ta = 0 and

magnetic field Bo = 0. Curve 1 corresponds to the parameter
value Rrv = 0, curve 2 — Rrm = 2, curve 3 — R = 20.

o 1 2 3 a4 5 6 71 k

Fig. 3. Dependence of the stationary Rayleigh number Rag
on the wavenumbers k for a medium uniformly rotating with
the Taylor number Ta = 946 (Ro = 0) without an external
magnetic field Bo = 0. Curve 1 corresponds to the parameter
value Ry = 0, curve 2 — Rrm = 2, curve 3 — R = 20.

Similarly, we calculated the minimum value of the
critical Rayleigh number Raj;™ using formula (17)

at k = k., which satisfies the following relation

E\°® E N\ k4
2 () +3 () =1+ (2) Rrm
s s s

Ta k2
—l—g(l + Ro) (1 — R"[‘Mi(k2 n 7T2)3> .

Fig. 3 shows the dependence of the critical (stati-

onary) Rayleigh number Rag; (17) on wavenumbers
k in the presence Ry # 0 and absence Ry = 0
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of the influence of TM effects. Here we observe that
with the increase of the coefficient Rty the mini-
mum value of the critical Rayleigh number Raj™,
for a uniformly rotating medium with the Taylor
number Ta = 946, decreases, i.e. the threshold
for the development of instability decreases. The
Taylor number Ta = 946 was calculated for the
parameters of the Earth’s core: Qg = 4-107° s7!
is the angular velocity of rotation; v = 2.6 m?/s
is the coefficient of hydrodynamic viscosity, which
is considered equal to the coefficient of magnetic
viscosity Pm = 1; h = 10> m is the thi-
ckness of the convective layer. The estimates of
the physical values of the Earth’s core given in
[25] have a fairly wide interval so we chose the
above values of density pg, electrical conducti-
vity o, thermal diffusivity yx, viscosity (v,7),
temperature Ty, thermoelectromotive force coeffi-
cient «, etc. convenient for numerical calculati-
ons and reasonable physical interpretation of the
results.

Next, we fix the value of the coefficient Ry = 2,
and the Rossby number Ro will be varied. Fig. 4
shows that with the increase of the positive profile
of the Rossby number Ro the minimum value of
the critical Rayleigh number also increases Rag ",
i.e., the threshold for the development of instabi-
lity increases. On the other hand, we observe the
decrease of the critical Rayleigh number for negati-
ve rotation profiles (Ro = —1) (curve 3), i.e. the
threshold for the development of instability is lower
compared to the case of a uniform (Ro = 0) (curve
2) and nonuniform (Ro = 2) (curve 1) rotation.

. Let us consider the case when there is no rotation
(Ta = 0,Ro = 0) but there is an external magnetic
field (Bg # 0). Then from expression (15) we found
the critical value of the Rayleigh number:

(k2+ﬂ'2)3 7T2Q
R = T m@rme

— RTM(]{ZQ +7T2). (18)

If Ry = 0, then we may obtain the result known
from monograph [26]. The minimum value of the
critical Rayleigh number Raf;'" is determined from
formula (18) at k = k., which satisfies the following

relation

E\°® E\* kA
2(> +3() 1+QQ+RTM<2)
s s Vs s

The graph in Fig. 5 shows the dependence of the
critical (stationary) Rayleigh number Rag (18) on
the wavenumbers k. The magnitude of the external
poloidal (or meridional) magnetic field emerging
from the core to the Earth’s surface is of the order
of By = 107! T [25], which will correspond to the
Chandrasekhar number Q = 1.68 - 10°. In Fig. 5
we observe the decrease of the minimum critical

min

Rayleigh number Rag™ with an increase of the

2401-8

coefficient Ry, which corresponds to a decrease
of the threshold for the development of instability.
Curve 1 is plotted for the case Ry = 0, curve 2
— RTM = 2, curve 3 — RTM = 20.

Thus, the conclusions about the lowering of the
threshold of convective instability taking into
account TM effects remain valid even in the
presence of an external magnetic field.

1

2

—
(=3
=
=}
JER S W

0 2

N

6 8 k

Fig. 4. Dependence of the stationary Rayleigh number Ragt

on wavenumbers k for an inhomogeneously rotating medi-

um with the Taylor number Ta = 946 without an external

magnetic field Bg = 0 at the constant parameter Rrm = 2.

Curves 1,2,3 correspond to Rossby numbers Ro = 2, Ro =0,
Ro = —1, respectively.

Raxi0¢
st
1.798

1.796
1.794

1.792

1.790
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1.786

1.784
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1.782

11 12 13

—
=
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Fig. 5. Dependence of the stationary Rayleigh number Rag¢

on wavenumbers k for a non-rotating medium (Ta = 0) in

an external magnetic field By = 107! T at different values

of the parameter Rry. Curves 1,2,3 correspond to Rrm = 0,
Rrm = 2, Rrm = 20, respectively.

All the limiting cases considered above are completely
in agreement with the conclusions of Chandrasekhar’s
works [26] on the suppression of convection by the effects
of rotation and an external magnetic field.
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Fig. 6. Dependence of the stationary Rayleigh number Rag; on

wavenumbers k for a rotating medium ( Ta = 946, Ro = —1)

in an external magnetic field Bo = 107" T and the magnetic

Prandtl number Pm = 1. The solid line corresponds to the

case without taking into account TM effects go = 0, Ro = 0,
and the dashed line for g, # 0, Ry # 0.

Let us now proceed to study the general case of nonuni-
formly rotating stationary magnetoconvection taking
into account TM effects. As before, we have calculated
the convection parameters (Q, Ta,Pm, q,, R,) using the
values of physical quantities (po, v, n, X, To, @, Bo, Qo) for
the Earth’s core [25]: Q = 1.68 - 10°, Ta = 946, Pm = 1,
qoPmPr" ~ 5.24-107%, R, Q ~ 2.5-10°. Fig. 6 shows the
minimum value of the critical Rayleigh number Rag™ 15
for the case when there are no TM effects Aa = 0 (the
medium is homogeneous in chemical composition). As
seen from Fig. 6, when TM effects are taken into account
the minimum critical Rayleigh number RaZ;™ decreases,
i.e. the threshold for the onset of convective instabili-
ty decreases. The dependence plot Rag (k) (Fig. 6) is
built for the Rayleigh rotation profile (Ro = —1). The
dependence plot Rag (k) for the profile of uniform rotati-
on (Ro = 0) and positive profile (Ro = 2) has the similar
view. It follows from the results obtained above that the
generation of a magnetic field using TM effects promotes
the development of convective instability. Magnetic and
thermal perturbations are localized in convective cells on
scales of the order [ ~ k!

Z 4 ﬁo” “EO
Uy
3 h
.P
U, T ¢
d
S(/ '
2z b)

Fig. 7. a) Diagram of a shear flow in rotating flows. In the local Cartesian system, this flow is approximated as a linear shear

with velocity Ug(X); b) Cartesian approximation of the problem for a nonuniformly rotating magnetic convection. Nonuniform

rotation in the local Cartesian system of coordinates consists of rotation with constant angular velocity € and shear velocity
Uy directed along the Y-axis.

IV. WEAKLY NONLINEAR REGIME OF
CONVECTION TAKING INTO ACCOUNT
THERMOMAGNETIC EFFECTS

In this section, we will consider the weakly nonlinear
convection regime, limiting ourselves, as in the previous
section, to TM effects associated with the inhomogenei-
ty of the thermoelectromotive force coefficient and “
magnetization” of the heat flux (Leduc-Righi effect).
By weakly nonlinear convection we mean the interacti-
on between small amplitudes of convective cells, which
can be described as follows. Let the small amplitude of
convective cells be of order O(e'), then the interaction
of the cells with each other leads to the second harmonic
and nonlinearity of the order O(¢?), and then to nonli-
nearity O(e®), etc. In this case, the nonlinear terms in
equations (9) are considered as perturbed response for

the linear convection problem. In this case, the Rayleigh
parameter Ra controlling convection is close to critical
Ra.. Since the influence of unstable modes is small, our
task is to obtain an equation that describes the interacti-
on between these modes.

A. Equations of nonlinear convection in rotating
flows of a magnetized fluid with a shear velocity

To describe the nonlinear convective phenomena in the
nonuniformly rotating layer of the electrically conducting
fluid, it is convenient to turn from the cylindrical coordi-
nate system (R,,z) to the local Cartesian (X,Y, 2)
one. If we consider a fixed region of the fluid layer wi-
th a radius Ry and angular velocity of rotation Qy =
Q(Ry), then the coordinates X = R — Ry correspond

2401-9



M. I. KOPP, K. N. KULIK, A. V. TUR, V. V. YANOVSKY

to the radial direction, Y = Ro(p — ®g) to azimuthal,
and Z = z to vertical (see Fig. 7). In this case, the
fluid layer inhomogeneous rotation can be represented
locally as the rotation with the constant angular veloci-
ty Qo and azimuthal shear [28] whose velocity profile is
locally linear Uy = —¢Q2g X ey, where ¢ = —dInQ)/dIn R
is the dimensionless shear parameter determined from
the profile of the angular velocity of rotation Q(R) =
Qo(R/Rp)~ 9. The shear parameter ¢ is bound up wi-
th the hydrodynamic Rossby number Ro = %% by
the relation ¢ = —2Ro. Note that the accretion disk wi-
th a shear parameter ¢ = 3/2,Ro = —3/4 corresponds

to the Keplerian disk; ¢ = 2,Ro = —1 corresponds to
the disk with a constant angular momentum, or the
Rayleigh rotation profile. The case of ¢ = 1,Ro = —1/2
corresponds to the system with a flat rotation curve, and
that of ¢ = 0, Ro = 0 to the homogeneous (or solid-state)
rotation with a constant angular velocity. As before, we
assume that the direction of the external magnetic fi-
eld By coincides with the axis of rotation of the fluid
Q| oz

The equations for the perturbations (u =
(ux,uy,uz), b = (bx,by,bz),p,0) in the local
Cartesian coordinate system take the following form:

J

d ) 191 By dbx
<(‘31va >ux+(u'V)uX290uY 0 X Jrupo(b V)bx+up0 57 (19)
d ) 1 By Oby
= : 200ux (1 =—(b- =20y 2
<6t vV ) uy + (u- V)uy + 2Qoux (1 + Ro) up(]( V)by 07 (20)
o ) 1 0p 1 By dby
- _ . =__ £ — (b- -/ 7z 21
<6t vV ) Uy + (u V)UZ 0007 + g0B710 + 00 (b V)bz + 0o 07 s (21)
o o
(m - v2) by — BO% +(u-V)bx — (b V)uy =0, (22)
0 9 ouy _ Aa 00
(m—ﬁv )by—BOaZ—QQoRObx—‘r(ILV)by—(b-V)uy— h X (23)
o o
(m - v2> by — Bo% +(u-V)bz — (b V)uz =0, (24)
B ) AT  aTy (Aa AT\ dby AT 0by
(mxv)ﬁuz~h+(u~V)9 pocp,uh<a JrT0>8X XN ax
L (L 000y 000by | pAadby | (0by 00 Oby 06 (25)
pocon \ “ox 0z " “ozox "' h oox ) \oxoz azox)

where the pressure p also includes the perturbed magnetic pressure p,, = 2% (QBO -b+ b2): P = p+ pm. In equations
(19)—(25), we assumed that all perturbed quantities depend only on two variables (X, Z), i.e., we consider the
dynamics of axisymmetric perturbations. The solenoidality equations for axisymmetric velocity and magnetic field
perturbations take the form
ab ab
=0, —=>X+ZZ=o.
oxX = 0z
Considering equations (26), we can introduce two scalar functions: hydrodynamic stream function ¢ and magnetic
¢, for which the following relations hold:

duz
0z

8ux

X 20

T Y )
VAR ) S VA &
It is convenient to transform Egs. (19)—(25) to dimensionless variables using terms of stream function ¢ and function

¢

h2
(Xa Z) = h($*72*)3 t= 715*3 w = Xl/f*, ¢ = hBO¢*7

v
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X v

Uy = h

by = Bov

= (AT)0*

Omitting the asterisk, we rewrite these equations in dimensionless variables:

<§t v2> V) + @7 —PrPm™! Q- v2¢ Ra % =PrPm Q- J(¢,V2p) — Pr 1. J(, Vi),
d ) o _
(87,‘ - v2> —VTa(1 + Ro)a—qf — PrPm™* 84; =PrPm'Q- J(¢,0) — Prt - J (1, 0),
(gt — Pm_1V2> ¢—Pr! 31/} = —PrtJ(,9), (27)
d ) o0 _
(57— P92 7= P G RoVTRGE — P R 5 = P (J(000) — (),

0 9 o o
(Prat—v>9—a +qaa =

ov
_ _ (g, 9V
J(,0) —q,70 pe

+42J(0,9),

where new designations for dimensionless parameters are introduced

1 _ AaBy (5

4y’ = )
“ pocpux

This system of equations is supplemented with the
following boundary conditions:

dv
= v2 = — = 5 = 0’
¥ 2=0,h ¥ 2=0,h dzlz=0,h v 2=0,h
do
= =0 =0. 28
dz lz=0,h 2=0,h (28)
In the absence of thermal and thermomagnetic

phenomena, the system of equations (27) was used to
study the saturation mechanism of the standard MRI
[29]. In the case when there are no TM effects, the system
of equations (27) was used to study weakly nonlinear and
chaotic convection regimes in a nonuniformly rotating
plasma in an axial magnetic field [23].

B. Equation of finite amplitude for stationary
convection

We will obtain an equation for the finite ampli-
tude of the magnetic field generated by the Rayleigh—
Benard convection and thermomagnetic instability in a
nonuniformly rotating electrically conductive fluid in an
external uniform magnetic field using the weakly nonli-
near theory (see for example [30]). We represent all the
variables in equations (27) in the form of an asymptotic

OéBO

- 2B (“5 T 1) |
PoCpiX \ @

(

expansion:
Ra = Ra. + €?Ray + ¢*Rag + .. .,
V=€ + €y + Pz + ...,
V= €V1 +€2’U2+€3’U3—|—...,
p=cpr+ €y + S hs+ ...,
V=ev + U+ T3+ ..., (29)
0 =cb + 20y + 305+ ...,

where € is the small parameter of the expansion, which

is the relative deviation of the Rayleigh number Ra from
the critical value Ra..:
5 Ra—Rac
€ = Ra. < 1.
We assume that the amplitudes of the perturbed quanti-
ties depend only on the slow time 7 = €2¢. Substituting
expansions (29) into the system of equations (27), we
solve it for different orders in e. For simplicity, we will
take into account the nonlinear terms in (27) only in the
heat balance equation.
In the first order in ¢, we obtain the equation

LM, =0, (30)
where "

U1
¢1 )
01

01

My
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L is the matrix operator of the form:

~v! Tal —Q2ZV? 0 ~Ra. 2
—VTa(l+Ro)2Z  —V? 0 -Q& 0
L= -prt 2 0 —Pm~'V? 0 0
0 —Pr'Z RovTaZ —Pm 'V? —Pm 'R,Z
—% 0 0 Go -V

The solutions of the system of equations (30) with the boundary conditions of (IV A) have, respectively, the form:

A P
1 = A(7)sink.zsinmz, ¢ = w sin k.x cos Tz,
a? Pr
A(T)k, ~
0, = (T2> (14 qo -Ty)coskexsinmz, v = -, A(7)sink.zsinnz,
a

(31)

_ 7V/Ta[(1 + Ro)(a* — k2¢aRs) + 72 QPmRo] — 7k2QR,

v = (@ + 720 — K2quRo) A(T) sin k.x cosz,

where

_ m?PmPr" vTa(l + Ro(1 — Pm)) + k2R,

I1,
a* + 72Q — k2go Ra

The critical value of the Rayleigh number Ra, for stationary convection is found from the first equation of system
(30) and has the form of the formula (15) obtained in the linear theory. The amplitude A(7) is still unknown.
For the second-order in €, we have the following equation:

LM, = Ns, (32)
() Noy
() Naa
where My = | ¢2 [, Na=| Nas |,
U Noy
P Nas

Nai = Nag = Nag = Noy =0,

R O A R s )

oxr 0z Ooxr 0z da Yo « \or 902 0z Oz

Using solutions (31) and boundary conditions (IV A), we can find solutions of equations (32):

¢2:O, ¢2:Oa U2:O7 :172:07

A%(7)k?
— 2\ (1,2, . ;
02 87'('(12 (1 o Ha) (1 + da Ha) Sln(27TZ). (33)

To analyze the intensity of the heat transfer, a horizontally-averaged heat flux is introduced at the boundary of the
layer of the electrically conducting fluid (Nusselt number)

27 [ke
BT e
Nu(r) =1+ P =0 — 1+ 4;2 A%(7). (34)

5T ]
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The heat flow intensity (of Nusselt number Nu) will be analyzed after the expression for the amplitude A(7) is
obtained.
For the third order of € we can find:

LM; = N, (35)
3 N3y
v3 N3
where Mz = | ¢3 |, N3=| N33 |[;
U3 N3y
03 N5
2
Ny = _Qv%l + Rag— 961 _ a? 0A(7) — Ragy keA(r) (1+4¢q-1,) | sink.zsinmz,
or or or 2

ovy  wv/Ta[(1+Ro)(a* — kZqaRa) + m*QPmRo] — Tk2QR, OA(T)

Nay = 001 _ .
82 or a?(a* + m2Q — k2qa Ra) ar o kez cosz,
0 7Pm 0A .
N33 = 6(17)'1 =~ ap 65‘ 7) sin k.x cos wz
v A
N3y = —% =11, - aai sink.xsinmz,
T T
o 891 8’(/)1 892 (1) 651 (2) 892 651 - k’c 814(7’) .
Nos = —Prgn = 5 as ~ gy~ 5, gy = TP 5 coskeasinmz
k3 A3
+ %(1 —¢@ 11,)2(1 + g - I1,) cos ke sin 7z cos 27z
E3A3
él) cgia(;)(l — q((f) T (1 4 qo - Ty )T, cos kex sin 7wz sin 27 2.
0

The solvability condition for the chain of nonlinear equations (32), (35) is known as Fredholm’s alternative (see, for
example, [31])

<M1*, R.H.> =0, (36)

where R.H. are the right sides of the perturbed equations with nonlinear terms. The matrix M1 = (wl, 91, (;51, U1)
is a nontrivial solution to the linear self-adjoint problem LTMlT = 0, where LT is a self-adjoint operator, which is
determined from the following relation

<M1T,EM1> = <ETM1T,M1>, (37)
where (, ) is the inner product, which here has the following definition:

27 [ ke

1
= / f-gdxdz.

z=0 z=0
Using expression (36), we write the Fredholm solvability condition for third-order O(g%) equations (35) in the following
form:
27 [ ke

1
/ {’EM\Q/JI “Rs31 — Rac—— Ok

o K6} - Ry + QVEEM] - Rys+ +\/Ta le Ras| dedz =0, (38)

z=0 =0
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where the notations are introduced

83A

L a0 (o >

— G [, 9? —z 0
M——axaz (V —Qazz) —l—anmPr TaP FRCH a3

B * 4 2p,.—1 >

P=(1+Ro)V* QPmRo(.9 5> 4= V" + ¢ Pm“Pr~"Ro Ta82,

2

022

63R34
02022’

R3z1 = N31, Rzx= <V4 -Q ) Rag + ¢oPmPr !

3R32

82
R3z = N3z Pr, Razq = <V4 + qaRaaxg> Ras — QR,

AVE
Rgs = — <V2N35 + qa
0z

)+ ¢oPm*Pr~'RoV Taua?)N33
Ox 01022’

022

0
Ray = — V4 N3y + QPrEVQNM + VTaQPmPrRo

Expressions for w}L , 91, qﬁ, vI are determined from the solution of the linear self-adjoint problem ETMI =0:

1/)1r = A(7)sink.xsinnz,

A(T)k, .
91 = — (72) (14 qo -1,) coskersinmz,
A P
qﬁ = _7(;—2)71;1*m sin k.x cos 7z,

¢ m/Ta[(1 + Ro)(a’ — k?¢aRa) + 7*QPmRo] — 7k2QR. A(r) sin b cos 2
L a?(at + 72Q — k29 Ry) ¢ '

The self-adjoint matrix operator LT takes the following form:

VAEM  —Ra.2KM  —QZVKM TalKM

- Raca KM Rauca KN 0 0
LT — €T xr _ o
Q2 VKM 0 QPrPm™'ViKCM 0
TaZ KM 0 0 —VTa LM

Here the notations for new operators are inroduced

64v2 5 4 82 4 82
02202 © v (V Q822> (V T dafla 33:2> ’

o v 2N\ [, o2 95v?
N==%- (V Q&zz) (V T lafay s ) G laQp 5555

E = ¢a R0 Q
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Fig. 8. Dependence of the Nusselt number Nu on time 7. The dashed line shows the case without taking into account TM
effects and the solid line with taking into account TM effects.
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Fig. 9. Dependence of the generated magnetic field amplitude v(7) on time 7. The steady-state amplitude v(7) taking into
account TM effects (solid line) is approximately 10? times greater than in the case without TM effects (dashed line).

By integrating (38), we can obtain a nonlinear equati-
on for the amplitude A(7), which refers to the Ginzburg—
Landau equation or the Bernoulli differential equation
with constant coefficients 7 5 3:

0A
-

Because of their cumbersome form, expressions 7 » 3 are
given in Appendix B. In the limiting case, when TM
effects are absent (¢o, = 0, R, = 0), the equation (39)
corresponds to the well-known result [32]. It is easy to
obtain an analytical solution (39) with a known initial

condition Ay = A(0):
A

\/%3/12 l—AQ”dS)exp (—%)

With the help of solution (40), we can determine
the change in the magnitude of heat transfer (Nusselt
number Nu ) and the amplitude of the generated
magnetic field v(7) from time 7 using formula (34). When
performing calculations, we take the initial amplitude
equal to Ay = 0.7 and Ras ~ Ra., which corresponds
to the smallness of the supercriticality parameter e.
Constant convection parameters Q, = Q/7? = 17000,

(40)

T, = Ta/7* = 10, R; = Ra/7* = 20000, Pm = 1,
Pr = 380000 correspond to the previously adopted
parameters of the Earth’s core and the external magnetic
field By = 10! T. The profile of nonuniform rotati-

n (Rossby number) is assumed to be Rayleigh, i.e.
Ro = —1. The graph of the dependence of the Nusselt
number Nu(7) for the above parameters is shown in Fig.
8. Here, the dashed line corresponds to the case without
taking into account TM effects, and the solid line — wi-
th taking into account TM effects. The graphs show the
establishment of the final value Nu(7), due to the relati-
onship between the number Nu(r) and the amplitude
A(T) (see formula (34)). The excess of the number Nu
over one is due to the occurrence of convection. When
TM effects are taken into account, heat transfer due to
convection decreases, since convective instability reaches
a stationary level at a lower value of the final amplitude.
In this case, a part of the thermal energy is transformed
into the energy of the generated magnetic field. The
graph in Fig. 9 shows the establishment of a finite ampli-
tude for the generated disturbances of the toroidal (Y-
component) magnetic field. Hence, it can be seen that
when the TM effects are taken into account, the ampli-
tude of the exciting magnetic field increased by about a
factor of 10% (1)
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Thus, convective processes taking into account TM
phenomena play an essential role in the generation of
magnetic fields in a nonuniformly rotating electrically
conducting fluid.

V. CONCLUSION

In this paper, we consider the mechanism of magnetic
field generation in a nonuniformly rotating electrically
conductive fluid by TMI, which occurs at collinear
temperature VT and thermoelectromotive force coeffi-
cient Ve gradients: [Va x VIy] = 0. The gradient of
the thermoelectromotive force coefficient Va is caused
by the inhomogeneity of the chemical composition of
the electrically conductive fluid. We have investigated
the generation of a magnetic field by TMI in a nonuni-
formly rotating layer of an electrically conductive fluid
in a constant vertical magnetic By||OZ and a gravitati-
onal —g||OZ field. In the linear approximation, we obtai-
ned the dispersion equation for axisymmetric perturbati-

ons, from which the critical Rayleigh number Ra. was
determined for the stationary convection regime. The
performed analysis of the stationary convection regi-
me showed that the threshold for the development of
convective instability decreases for a negative rotation
profile (Ro < 0). Also, the threshold for the development
of convective instability taking into account TM effects
also decreases for any profile of a nonuniform rotati-
on, i.e. has a destabilizing effect. We investigated the
weakly nonlinear stage of stationary convection taking
into account TM effects using perturbation theory in the
small supercriticality parameter ¢ = y/(Ra — Ra.)/Ra,
of the stationary Rayleigh number Ra,. and obtained the
nonlinear Ginzburg-Landau equation for the convection
amplitude. From the solution of this equation, it follows
that the generated toroidal magnetic field reaches a stati-
onary level.

The results obtained in this work can find application
in various problems of the magnetic geodynamo, as well
as in laboratory studies on rotating magnetic convection
taking into account thermomagnetic phenomena.
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GENERATION OF MAGNETIC FIELDS BY THERMOMAGNETIC EFFECTS...

T'EHEPAIIISI MATHITHOTO TTOJII TEPMOMATHITHUMU E®EKTAMU B IITAPI
EJIEKTPOIIPOBIJIHOI PIJIMHU, AKNI HEOJHOPIJTHO OBEPTAETHCSI

M. 1. Konn', K. M. Kyauk®', A. B. Typ®, B. B. Suoscpkuii'?
! Inemumym monoxpucmanie, HAH Yxpainu, npocn. Hayxu, 60, 61001 Xapris, Yrpaina,
2 Xapwiscoruil nayionasvrud yrwieepcumem imeni B. H. Kapasina, matidan Ceobodu, 4, 61022, Xapxis, Vrpaina,
3 Tyaysvrut ynisepcumem [UPS], CNRS, Incmumym eueuenns acmpodiduru ma naarnemonozii, as. Iloaxosnuka Powe,
BP /4346, 31028, Tyaysa Cedex 4, Ppanuia

Y crarti PO3IIAHYTO T'€HEPAIiI0 MATHITHUX TOJIB y IMapi CKiHYeHHOI TOBIIUHU €JIEKTPOIPOBiTHOL
piaunu, sxuil HeouHOPinHO obepraeTbes 3a paxynok repmomaruitHol (TM) necriiikocri. g necrabinb-
HICTh BUHWKAE Yepe3 rpajient remneparypu V71 i rpagiest nuromoi Tepmoepc Va. HeobxigHow yMOBOIO
puanKHEeHHS TM HecTiKOCTI € KoJliHeapHiCTh I'paieHTiB TemuepaTypu V1 i muromoi Ttepmoepc Va. Poz-
[JISTHYTO 'eHePaliio a3UMyTaJIbHOrO (TOPOIAAIBLHOIO) MAIHITHOIO HOJIs B TOHKOMY MIapi eJIeKTPOIpPOBi/I-
HOI piuHM, AKAH HEOJHOPIAHO 00EPTAETHCH, 110 BUHUKAE YePe3 yCTAHOBJIEHHS MTO3UTHUBHOIO 3BOPOTHOI'O
3B’S13Ky B CHCTeMi 3aBasiku edexkram HeomHOpigHOoCTI muToMol Tepmoepc i Jlemroka—Puri. Ha Beprukamn-
HUX MeXKax Mapy TiATPUMYIOThCS TTOCTifiHI 3HaAUeHHS TeMIIEPATyPH i MUTOMOI TEPMOEPC, TPUIOMY HUZKHS
MMOBEPXHS APy MA€ BUIILY TEMIIEPATYPY, HI2K BepxHs. ¥ POOOTI 10CTimKeHO JiHiiHY @ HemiHiiiHy cramil
KOHBEKTUBHOI HECTIKOCTI 3 ypaxyBaHHsaM reHepanii MaraiTHoro noss. OrpuMano 3arajbHe Jucrepciiine
DIBHSIHHS 117151 ocecuMeTpnaHux 0/0p = 0 30ypeHb, 10 OMUCY€E JiHIfHY CTasil0 KOHBEKTHBHOI HECTIKO-
cTi. Y cTamioHapHOMY pPeXKMMi KOHBEKIIil BCTAHOBJIEHO, IO TeHePAIlisd TOPOIJAJTFHOTO MATHITHOTO TIOJIS 34
paxysok TM HecrifikocTi iCTOTHO 3HMKYE TOPIr PO3BUTKY KOHBEKTHBHOI HECTIMKOCTI B IMapi 3amMartide-
HOl eJIEKTPOINPOBIAHOI PiWHU, KUt HEOAHOPITHO 00ePTAETHCsT 33 Oyab-IKOro mMpodinio HEOTHOPITHOTO
obeprannsg (uucna Poccou Ro). g onucy HemiHIRHUX KOHBEKTUBHUX SIBUI BUKOPUCTAHO JIOKAJIBHY J16-
KapTOBY CHCTEMY KOOPIWHAT, y SKiii HEOTHOpigHe obepTaHHs Mapy PianHM 300parkKeHo y BHUIJIAML 0bep-
TaHHs 3 NOCTIHOI KyTOBOIO mBUAKIcTIO Qg it asumyranbuum 3cyBom Ug(X), npodinb mBuakocTi skoro
JIOKQJILHO JIHIWHMNA. YHACTIIOK 3aCTOCYBAHHS METOMy Teopil 30ypeHb [Jisi MAJIOr0 MapaMerpa HaIKPHU-
tuanocti € = /(Ra — Ra.)/Ra. cramionaproro uucia Penes Ra. orpumano Heniniiine piBHAHHS THITY
T'im36ypra—Jlanmay. e piBHsHHS OMHUCye eBOMIONII0 KiHIEBOT aMIIi Tyl 36ypennb. UncaoBe po3s’a3anus
IHOTO PIBHSHHS JO3BOJIAJIO BUBHAYUTH TEILIONEpeHoc y mapi piauau 3 TM-edekramu i 6e3 aux. Ilokaza-
HO, TII0 aMILTITY/Ia CTAIIOHAPHOTO TOPOIIATLHOTO MATHITHOTO OIS TIOMITHO 30L/IBINYETHCS 3 YPaXyBaAHHIM
TM-edexTis.

KurrouoBi cJsioBa: TepMOEIEKTPOPYIIiiHa, CHjla, eHepallisi MAarHiTHUX TOJIB, KOHBeKIls Pejes—
Benapa, ciaGonesiniiina Teopis, pisasuns Iin36ypra-Jlammay.
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