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This paper studies, the generation of magnetic �elds in a nonuniformly rotating layer of �nite
thickness of an electrically conducting �uid by thermomagnetic (TM) instability. This instability
arises due to the temperature gradient ∇T0 and thermoelectromotive coe�cient gradient ∇α. The
in�uence of the generation of a toroidal magnetic �eld by TM instability on the convective instability
in a nonuniformly rotating layer of an electrically conductive �uid in the presence of a vertical
constant magnetic �eld B0‖OZ is established. By applying the method of perturbation theory for
the small parameter ε =

√
(Ra− Rac)/Rac of the supercriticality of the stationary Rayleigh number

Rac, a nonlinear equation of the Ginzburg�Landau type was obtained. This equation describes the
evolution of the �nite amplitude of perturbations. Numerical solutions of this equation made it
possible to determine the heat transfer in the �uid layer with and without TM e�ects. It is shown
that the amplitude of the stationary toroidal magnetic �eld noticeably increases with allowance for
TM e�ects.
Key words: thermoelectromotive force, generation of magnetic �elds, Rayleigh�Benard convecti-

on, weakly nonlinear theory, Ginzburg�Landau equation.
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I. INTRODUCTION

Magnetic �elds in the Universe are observed an vari-
ous cosmological scales from small planets to galaxi-
es. The question of the origin of magnetic �elds in
various astrophysical objects is dealt with by the
dynamo theory, which was developed as an independent
section of magnetohydrodynamics. Initailly, the term
�dynamo� was coined by Sir Larmor [1]. In his opinion,
the hydrodynamic motion of an electroconductive �uid
can generate a magnetic �eld by acting as a dynamo.
In the modern sense, the dynamo mechanism represents
the generation of a large-scale magnetic �eld due to the
combined action of the di�erential (nonuniform) rotation
of an astrophysical object and the mirror asymmetry of
turbulent or convective �ows. The topological characteri-
stic of such �ows is helicity Js = v rotv, which is a
measure of the knottedness of vortex �eld force lines [2].
The generation of the mean �eld occurs under the action
of a turbulent e.m.f. proportional to the mean magnetic
�eld E = αhH. The coe�cient αh is proportional to the
average helicity of the velocity �eld αh ∼ v rotv and it
is called the α-e�ect in the literature [3]. The large-scale
generation is usually called α2

h-dynamo in the absence
of di�erential rotation, and it is called αhΩ-dynamo in
the presence of the rotation. The most developed at the
moment is the dynamo theory in the kinematic formulati-
on [2�10].
Of no less importance are issues related to the self-

excitation of magnetic �elds by external e.m.f. As shown
by Schl�uter and Biermann [11], the inhomogeneity of
the chemical composition of a space object can lead to
non-parallelism of the gradients of the electron pressure

∇pe and electron concentration ∇ne. The result is a
�battery� electric �eld E(i) = (1/ene)∇pe, which leads
to the excitation of magnetic �elds ∂B/∂t ≈ rotE(i).
Such a mechanism is associated with the generation
of initial magnetic �elds, which at some moment were
completely absent. In this case, it is not always rightly
assumed that only weak initial �elds arise [4], which
are necessary to turn on the dynamo. Numerical esti-
mates carried out in [12] showed that the magnetic �elds
of the Earth and planets are created by thermoelectric
currents that �ow in a highly conductive region inside the
planet. The temperature gradients ∇T and the gradient
of the thermoelectromotive force coe�cient ∇α must be
directed at an angle to each other. Then, the magnetic
�eld is excited ∂B/∂t ≈ [∇T × ∇α] by analogy with
the �battery� e�ect of Biermann�Schl�uter because of the
non-parallelism of the vectors ∇T and ∇α. In the work
[12] it is noted that Braginsky's conclusion [17] about
the insigni�cance of thermopower in the Earth's core is
unfounded. In [13] it was assumed that the temperature
gradient and the gradient of the thermoelectromotive
force coe�cient are parallel [∇T0×∇α] = 0. However, as
shown in this paper, under the condition [∇T0×∇α] = 0
the generation of magnetic �elds is also possible due to
the development of thermomagnetic instability (TMI).
Thus, there are no contradictions with the Braginsky
dynamo in this case.

Astrophysical applications of TMI are discussed in
detail in review [14], where an explanation of the
appearance of strong magnetic �elds in the cores of white
dwarfs, binary systems, and neutron stars is given. In a
recent paper [15], the generation of a magnetic �eld by
TMI in the surface layers (hot plasma) of massive stars
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was considered. Such generation is possible in the upper
layers of the atmosphere of hot stars, where deviations
from local thermodynamic equilibrium form a region wi-
th an inverse temperature gradient. In [15], the case of
the generation of only small-scale magnetic �elds with
horizontal wavelengths λ = 2π/kx much smaller than the
characteristic scale L of unperturbed quantities λ � L
was considered. Thus, TMI is an alternative mechanism
of the origin of magnetic �elds in various astrophysical
objects along with the existing theories of the turbulent
[2�10] and convective dynamo [16].

In some recent works [17�19], the TMI in nonuniformly
rotating plasma media (hot galactic disks, accretion di-
sks) in an external axial magnetic �eld was considered.
These papers present an analysis of the linear stabi-
lity of ionized hot disks with a temperature gradient
and an external axial magnetic �eld. Earlier, Gurevich
and Helmont [20] studied the destabilizing e�ect of the
temperature gradient on the propagation of Alfven waves
in astrophysical plasma in the absence of a hydrodynamic
motion. As shown in [17�19], the hydromagnetic and
thermomagnetic e�ects associated with the Nernst e�ect
can lead to the ampli�cation of waves and make disks
unstable. The regimes under which both thermomagnetic
and magnetorotational instabilities (MRI) can operate
were discussed. MRI arises when a weak axial magnetic
�eld destabilizes the azimuthal di�erential rotation of
the plasma, and when the condition dΩ2/dR < 0 for the
case of a nondissipative plasma is satis�ed [21]. Since this
condition is also satis�ed for Keplerian �ows Ω ∼ R−3/2,
the MRI is the most likely source of turbulence in accreti-
on disks [22]. It was noted in [19] that even in the absence
of MRI, TMI due to the Nernst e�ect is a good candidate
for ensuring the onset of turbulence in disks.

Unlike papers [15, 17�19], in this paper we studi-
ed the spontaneous generation of a magnetic �eld by
TMI in a nonuniformly rotating layer of an electri-
cally conducting �uid in the presence of an external
constant axial magnetic �eld. Here TMI is due to the
collinear temperature gradient and the gradient of the
thermoelectromotive force coe�cient. This work is a
continuation of the research begun in [23], where the
problem of the stability of an electrically conducting
�uid between two rotating cylinders (Couette �ow) and
the Rayleigh�Benard problem in an external constant
magnetic �eld were considered. In contrast to [23],
we studied the in�uence of TM e�ects on convecti-
ve processes, as well as the weakly nonlinear evoluti-
on of the toroidal magnetic �eld generated by TMI.
The work consists of the following sections. Secti-
on I (Introduction) gives a brief overview of the main
problems of modern dynamo theory. In Section II, the
basic equations of magnetohydrodynamics taking into
account thermomagnetic phenomena in the Boussinesq
approximation are obtained. These equations descri-
be the generation of magnetic �elds in a nonuni-
formly rotating electrically conducting �uid in a constant
magnetic �eld. In Section III, the stationary magnetic
convection (the Rayleigh�Benard problem) in a nonuni-
formly rotating liquid layer is considered, where a toroi-

dal magnetic �eld is generated due to the temperature
di�erence and speci�c thermopower at the layer bound-
aries. In Section IV, we investigated the weakly nonli-
near stage of a stationary inhomogeneously rotating
magnetic convection taking into account TM e�ects.
We obtained the nonlinear Ginzburg�Landau equation
applying the method of perturbation theory in the small
parameter of the supercriticality of the Rayleigh number
ε =

√
(Ra− Rac)/Rac. In the last Section V (Conclusi-

on) we presented the main results obtained in the work.

II. STATEMENT OF THE PROBLEM AND
EQUATIONS OF THE EVOLUTION OF SMALL

PERTURBATIONS

Let us consider the following problem statement.
Let us asume that a nonuniformly rotating electrically
conducting �uid (for example, liquid metal or plasma) is
in a constant gravitational g and magnetic �eld B0 at a
constant vertical temperature gradient ∇T0 = const =
−Ae (A > 0) is a constant gradient, e is a unit vector
directed vertically upward along the axis) and a gradi-
ent of the thermoelectromotive force coe�cient ∇α ‖ e.
In the model considered here, we assume that the gradi-
ent of the speci�c thermoelectric power is associated wi-
th the inhomogeneity of the chemical composition of
the conducting liquid. In this model, we assume that
the gradient of the thermoelectromotive force coe�cient
∇α is associated with the inhomogeneity of the chemi-
cal composition of the conducting �uid. It is known
that expressions for Ohm's law and heat �ux q in the
presence of a magnetic �eld B and a temperature gradi-
ent∇T are modi�ed taking into account thermomagnetic
phenomena [24]:

E + [V×B] =
j

σ
+α∇T +R[B× j] +N [B×∇T ], (1)

q− ϕj = −κ∇T + αT j +NT [B× j] + L[B×∇T ], (2)

where R,N ,L are the Hall, Nernst, and Leduc�
Righi coe�cients, respectively; ϕ � electrical potenti-
al. In expressions (1)�(2), we neglected the anisotropy
of the coe�cients of electrical conductivity σ‖ ≈
σ⊥ = σ, thermal conductivity κ‖ ≈ κ⊥ = κ, and
thermoelectromotive force α‖ ≈ α⊥ = α due to the
weakness of the external magnetic �eld B0 because the
parameter is small β = B2

0/2µP0 � 1 ( P0 is the stati-
onary pressure of the �uid, µ is the coe�cient of magnetic
permeability). By applying the operation rot to Ohm's
law (1), we obtain the equation for the magnetic �eld
induction B. After the substitution of expression (2) into
the heat balance equation

ρ0cp
dT

dt
= −div q,

let us write the equations of magnetohydrodynamics for
a viscous incompressible �uid in the Boussinesq approxi-
mation taking into account thermomagnetic phenomena:

∂V

∂t
+ (V · ∇)V = − 1

ρ0
∇
(
P +

B2

2µ

)
+

1

ρ0µ
(B · ∇)B

+ egβTT + ν∇2V, (3)
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∂B

∂t
+ (V · ∇)B− (B · ∇)V = η∇2B− [∇α×∇T ]

− R
µ
rot[B× rotB]−N rot[B×∇T ], (4)

∂T

∂t
+ (V · ∇)T = − 1

ρ0cp
div
(
− κ∇T +

j2

σ
+ αT j

+ NT [B× j] + L[B×∇T ]
)
, (5)

div B = 0, div V = 0, (6)

where βT is the coe�cient of thermal expansion, ρ0 =
const is the density of the medium, ν is the coe�ci-
ent of kinematic viscosity, η = 1/µσ is the coe�cient
of magnetic viscosity. Equation (4) contains a source
of excitation of a magnetic �eld of non-electromagnetic
nature [∇α × ∇T ], which is an analog of the �battery�
Biermann�Schl�uter e�ect in the plasma. The drift of
the lines of force of the magnetic �eld in equation
(4) is associated not only with the movement of the
�uid V but also with the heat �ux where the rate
of thermal drift is equal to: VT = N∇T . The drift
of the magnetic �eld due to the Nernst e�ect contri-
butes to its penetration to a large area of the medium.
Let us estimate the excited magnetic �eld in the stati-
onary regime without taking into account the drift of
the �eld and the Hall e�ect. Then from (4) for the φ-
component of the (toroidal) magnetic �eld, we obtain:
Bmax
φ ≈ αTµσ(LB/Lα), where LB is the characteristic

scale of the excited magnetic �eld, Lα is the characteri-
stic scale of the medium inhomogeneity. Substituting
the values of the parameters of the �uid Earth's core:
αT ∼= 10−2 V (at temperature T ∼= 1000 K) [12],
µ = 4π ·10−7 V·s/A·m, σ = 3 ·105 (V·m/A)−1 [6] for the
ratio of scales (LB/Lα) = 102, we obtain an estimated
value of the toroidal magnetic �eld of the Earth's core
Bmax
φ
∼= 10−1 T, which coincides in order of magnitude

with the data from monograph [25].

Let us investigate the possibility of generating a
magnetic �eld as a consequence of the development of
TM instability by presenting all quantities in equations
(3)�(6) as the sum of the stationary and perturbed parts
V = V0 + u, B = B0 + b, P = P0 + p, T = T0 + θ. Here
we assume that the stationary rotation velocity of the
�uid has an azimuthal direction V0 = RΩ(R)eφ. The
angular velocity of rotation Ω(R) is directed vertically
upward along the axis OZ. The homogeneous (constant)
magnetic �eld B0‖Ω is also directed along the axis OZ:
B0 = (0, 0, B0). Further, the magnetic �eld B0 will be
called axial in the cylindrical coordinate system (R,φ, z).
The stationary state of the system of equations (3)�(6)
is described by the following equations:

Ω2R =
1

ρ0

dP0

dR
,

1

ρ0

dP0

dz
= gβTT0,

d2T0

dz2
= 0. (7)

B0
d

dz
Ω(R)R = [∇α×∇T0]φ = 0. (8)

Equations (8) show that centrifugal equilibrium is
established in the radial direction, and hydrostatic equi-
librium in the vertical direction. From equation (8) it
follows that the thermoelectromotive coe�cient α has a
constant value in the radial direction: dα/dR = 0, then
it can have a dependence on the coordinates (φ, z). If we
consider the distribution of the chemical composition of
the medium to be axisymmetric, then the condition is
satis�ed: dα/dz 6= 0. In this case, the condition of colli-
nearity of vectors is also satis�ed [∇α×∇T0] = 0, and the
gradients ∇α and ∇T0 can be both parallel to each other
∇α ↑↑ ∇T0 and antiparallel: ∇α ↑↓ ∇T0. The evolution
equations for the perturbed quantities (u,b, p, θ) against
the background of a stationary state take the following
form:

∂u

∂t
+ (V0 · ∇)u + (u · ∇)V0 = − 1

ρ0
∇
(
p+

1

µ
B0b +

1

2µ
b2

)

+
1

ρ0µ
(B0 · ∇)b + gβT θe + ν∇2u +R

(1)
NL,

∂b

∂t
+ (V0 · ∇)b− (B0 · ∇)u− (b · ∇)V0 = η∇2b− [∇α×∇θ]− R

µ
rot[B0 × rotb]

− N rot([B0 ×∇θ] + [b×∇T0]) +R
(2)
NL, (9)

∂θ

∂t
+ (V0 · ∇)θ + (u · ∇)T0 = χ∇2θ − αT0

ρ0cpµ
(Kα + KT )rotb− NT0

ρ0cpµ
div[B0 × rotb]

− χ∧div([b×∇T0] + [B0 ×∇θ]) +R
(3)
NL,

div b = 0, div u = 0,
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where the nonlinear terms R(1)
NL, R

(2)
NL, R

(3)
NL are equal respectively:

R
(1)
NL = −(u · ∇)u +

1

ρ0µ
(b · ∇)b,

R
(2)
NL = (b · ∇)u− (u · ∇)b− R

µ
rot[b× rotb]−N rot[b×∇θ],

R
(3)
NL = −(u · ∇)θ − 1

ρ0cpµ
(α∇θ + θ∇α)rotb− N

ρ0cpµ
(∇T0 · [b× rotb]

+ ∇θ · [(B0 + b)× rotb] + (T0 + θ)div[b× rotb] + θ div[B0 × rotb])− χ∧ div[b×∇θ].

In equations (9) new introduced designations Kα =
∇α/α,KT = ∇T0/T0 are scales of inhomogeneity of
the medium Lα ∼= |Kα|−1, LT ∼= |KT |−1, χ∧ =
L/ρ0cp is the skewed coe�cient of thermal di�usivity.
The system of equations (9) is quite complicated for a
complete analysis. Next, we consider the evolution of
small perturbations by linearizing Eqs. (9). Then we
can neglect nonlinear terms. The generation of magnetic
�elds arises due to the e�ects associated with the
inhomogeneity of the thermoelectromotive force coe�-
cient and magnetization of the heat �ux (Leduc�Righi
e�ect). Thus, in equation (9), we restrict ourselves to
only taking these e�ects into account. We will consi-
der the evolution of axisymmetric perturbations, i.e.
independent of the azimuthal angle φ (∂/∂φ = 0), and
we apply the local WKB method for equations (9) for
small perturbations that depend on radial coordinates
R. For this purpose, we expand all quantities in a Taylor
series in the vicinity of �xed points R0 leaving the terms
of order zero in local coordinates R̃ = R − R0. As a
result, we obtain a system of di�erential equations with
constant coe�cients. All perturbations in this system of
equations are represented in the form of plane waves

(u,b, θ, p̃) =
(
U(z),H(z),Θ(z), P̃ (z)

)
exp(γt+ ikR̃).

(10)
As a result of simple but cumbersome mathematical
operations, these equations are reduced to one di�erenti-
al equation for Uz:[

â11 (â22â33 − â23â32) + â12 (â23â31 − â21â33)

+â13 (â21â32 − â31â22)

]
Uz = 0, (11)

where Pr = ν/χ is the Prandtl number, Pm = ν/η

is the Prandtl magnetic number, Ta = 4Ω0
2h4

ν2 is the
Taylor number, Ha = B0h√

ρ0µνη
is the Hartman number,

Ra = gβT (∆T )h3

νχ is the Rayleigh number, Rα = ∆α∆T
ηB0

is the thermoelectromotive force number, dimensionless
parameter:

qα =
αT0B0

ρ0cpµχ(∆T )

[(
µL
α

+ 1

)
∆T

T0
+

∆α

α

]

is associated with the in�uence of the thermoelectromoti-
ve force and Leduc�Righi e�ects on the heat transfer
process. We use the Chandrasekhar numbers Q = Ha2

and Q̃ = QPm−1Pr instead of the Hartmann number
Ha for convenience. Equation (11) is supplemented with
boundary conditions only in the z-direction

Uz =
d2Uz
dz2

= 0 at z = 0 and z = 1. (12)

Equation (11) with boundary condition (12) describes
convective phenomena in a thin layer of a nonuniformly
rotating magnetized �uid with thermomagnetic e�ects.

III. GENERATION OF A MAGNETIC FIELD
BY THERMOMAGNETIC EFFECTS IN A THIN
LAYER OF A NONUNIFORMLY ROTATING

FLUID

Let us consider a stationary �ow of a nonuniformly
rotating incompressible viscous electrically conductive
�uid, which is modeled by the Couette�Taylor �ow
enclosed between two rotating cylinders with an angular
velocity of rotation Ω(R):

Ω(R) =
Ω2R

2
2 − Ω1R

2
1

R2
2 −R2

1

+
(Ω1 − Ω2)R2

1R
2
2

R2(R2
2 −R2

1)
,

where R1 = Rin, R2 = Rout,Ω1 = Ωin,Ω2 = Ωout are
radius and angular velocity of rotation of the inner and
outer cylinders, respectively. The choice of this type of
�ow is due to the possibility of realization of the theory
developed here in laboratory experiments. The height
of the cylinders corresponds to a liquid layer of �ni-
te thickness h under the condition h � (Rout − Rin).
The geometry of the problem is shown in Fig. 1. On
the lower plane of the layer, a higher temperature Td

is supported than on the upper plane Tu: Td > Tu �
the heating from below. The thermoelectromotive force
coe�cient αd on the lower (hot) plane is less than on
the upper (cold) plane αu: αd < αu. This situation is
quite possible if we take into account the dependence of
the thermoelectromotive force coe�cient on temperature
α ∼ ψ/T0 (ψ is the chemical potential) [24]. A spatially
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inhomogeneous distribution inside a layer T0(z) and α(z)
can be represented as a linear dependence on z:

T0(z) = Td−
∆T

h
·z, ∆T = Td−Tu, α(z) = αd+

∆α

h
·z,

∆α = αu − αd.

Fig. 1. An electrically conductive �uid �lls in a layer
between two rotating cylinders with angular velocities Ωin

and Ωout, respectively. The lower surface of the layer has the
temperature Td and the thermoelectromotive force coe�cient
αd, and the upper surface has Tu and αu: Td > Tu, αd < αu.
The generated magnetic �eld has an azimuthal direction Hφ.

As is known [26], the temperature di�erence at the
boundaries of the layer in the gravity �eld g leads to a
violation of mechanical equilibrium in the system. In this
case, the convective instability develops and convective
cells are formed. Temperature perturbations acting in

the radial direction lead to the appearance of a vortex
thermal current due to the di�erence in the values of
the thermoelectromotive force coe�cient ∆α(z) at the
layer boundaries. This current induces disturbances of
the azimuthal (toroidal) magnetic �eld Hφ (see Fig. 1),
which in�uences the heat transfer regime. The excited
magnetic �eld Hφ creates heat �uxes directed perpendi-
cular to the �eld itself and the temperature gradient.
Thus, positive feedback is established: newly arising heat
�uxes create a vortex thermoelectromotive power, which
enhances magnetic �eld disturbances Hφ. Naturally, the
thermomagnetic instability will a�ect the development
of convective instability. We will consider this issue in
the current section.

A. Dispersion equation for TM perturbations

For simplicity, the solution of equation (11) with
boundary condition (12) will be sought in the form of
a single-mode approximation

Uz = W0 sinπz, (13)

whereW0 is a constant amplitude. Substituting (13) into
(11) and integrating over the layer thickness z = (0, 1),
we obtain the dispersion equation

Ra =
(
Ra(0) − Ra(TM)

)(
1− k2qαRα

ΓηΓχ

)
∆−1, (14)

where Ra(0) is the contribution to the dispersion equation
without taking into account TM e�ects, obtained in [23]:

Ra(0) =
Γχ(a2Γ4

A + π2Ta(1 + Ro)Γ2
η + π4Ha2TaRoPm)

k2ΓηΓ2
A

,

Ra(TM) = qαRα
a2(γ + a2)

Γη
+ qαRα

π2Ta
Γ2
A

(1 + Ro) +Rα
π2Q
Γ2
A

PmPr−1
√
Ta,

∆ =

(
1− qα

Γ2
η

π2Pm2Pr−1Ro
√
Ta
)(

1− qαRα
ΓχΓ2

A

k2(γ + a2)

)
+
qαπ

2PmPr−1

Γ2
ηΓχΓ2

A

×
(√

Ta(1 + Ro)Γη(ΓηΓχ − k2qαRα) + π2QPmRo
√
TaΓχ

)
− qαRαπ

2k2Q
ΓηΓχΓ2

A

,

where the new notation is introduced

Γ2
A = (γ + a2)(γPm + a2) + π2Ha2, Γχ = γ Pr +a2,

Γη = γPm + a2, a2 = π2 + k2.

In the absence of thermal processes, MRI arises in a
nonuniformly rotating layer of an electrically conductive

�uid in a constant magnetic �eld. In this case, equati-
on (14) coincides with the dispersion equation for the
standard MRI (SMRI) taking into account dissipative
processes [27]. The threshold value of the hydrodynamic
Rossby number Ro is determined using the condition
γ = 0 and has the form:

Rocr = −a
2(a4 + π2Ha2)2 + π2a4Ta

π2Ta(a4 + π2Ha2Pm)
.
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When transforming to dimensional variables

π2Ha2

a4
→ ω2

A

ωνωη
,
π2Ha2Pm

a4
→ ω2

A

ω2
η

,

Ta
a4
→ 4Ω2

ω2
ν

,
π2

a2
→ ξ2

the expression for Rocr is found [27]

Rocr = −
(ω2
A + ωνωη)2 + 4ξ2Ω2ω2

η

4Ω2ξ2(ω2
A + ω2

η)
,

The criterion for MRI appearance is the condition
imposed on the angular velocity pro�le Ω(R) of the

rotating �uid, i.e., Rossby number Ro > Rocr. Let us
now analyze a more general case when there is the heati-
ng of the �uid layer Ra 6= 0 and its nonuniform rotation
Ro 6= 0 taking into account the thermomagnetic e�ects.

B. Stationary convection regime

Obviously, for the stationary convection mode, the
increment γ is zero (γ = 0), therefore, from formula (14)
we can �nd the critical value of the Rayleigh number
Rast for stationary convection:

Rast =

[
Ra(0)

st − a2qαRα −
π2Rα

a4 + π2Q

(
Ta(1 + Ro)qα + Q̃

√
Ta
)][

1 +
qαπ

2PmPr−1
√
Ta(1 + Ro(1− Pm))

a4 + π2Q

]−1

,

(15)
where

Ra(0)
st =

a6

k2
+
a2π2Q
k2

+
π2Ta
k2
· a

4 + Ro(a4 + π2QPm)

a4 + π2Q
.

The minimum value of the critical Rayleigh number is found from the condition ∂Rast/∂k = 0 and corresponds to
the wavenumbers k = kc that satisfy the following equation:(

1 +
qαπ

2PmPr−1
√
Ta(1 + Ro(1− Pm))

(π2 + k2
c )2 + π2Q

)

×

(
M(kc)− RTM ·

k3
c (π2 + 2k2

c )

(π2 + k2
c )

+ RTM ·
2π2k3

c (Ta(1 + Ro)RTM +RαQ̃
√
Ta

(π2 + k2
c )((π2 + k2

c )2 + π2Q)2

)

+

(
(π2 + k2

c )3

k2
c

− RTM · k2
c (π2 + k2

c ) +
π2 + k2

c

k2
c

· π2Q

+
π2Ta(1 + Ro)((π2 + k2

c )2 − k2
cRTM) + π4QPmRoTa− k2

cπ
2RαQ̃

√
Ta

k2
c ((π2 + k2

c )2 + π2Q)2

)

×2k3
cπ

2qαPmPr
−1
√
Ta(1 + Ro(1− Pm))

(π2 + k2
c )((π2 + k2

c )2 + π2Q)2
= 0,

where RTM = qαRα is a dimensionless parameter depending on the temperature the gradient and gradient of the
thermoelectromotive force coe�cient. In the limiting case, when TM e�ects are absent, this equation coincides with
the result of [23]:

M(kc) =
2k2
c − π2

kc
− π4Q
kc(π2 + k2

c )2
+

2π2kcTa(1 + Ro)

(π2 + k2
c ) ((π2 + k2

c )2 + π2Q)

− π2Ta((π2 + k2
c )2 + π2Q + 2k2

c (π2 + k2
c ))

kc((π2 + k2
c )2 + π2Q)2

− π2TaRo((π2 + k2
c )2 + π2QPm)((π2 + k2

c )2 + π2Q + 2k2
c (π2 + k2

c ))

kc(π2 + k2
c )2((π2 + k2

c )2 + π2Q)2
= 0.
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Let us consider some limiting cases.

1. In the absence of rotation (Ta = 0,Ro = 0) and
magnetic �eld (B0 = 0), from expression (15) we
found

Rast =
(k2 + π2)3

k2
− RTM(k2 + π2). (16)

If the gradient of the thermoelectromotive force
coe�cient is zero (the medium is chemically
homogeneous), then the well-known result follows
from (16) Ramin

st = (k2 + π2)3/k2. Here, the mini-
mum value of the critical Rayleigh number Rast =
27π4/4 is reached at wavenumber kc = π/

√
2 [26].

The minimum value of the critical

Rayleigh number Ramin
st is calculated by the

formula (16) at k = kc, which satis�es the following
relation

2

(
kc
π

)6

+ 3

(
kc
π

)4

= 1 +

(
k4
c

π6

)
RTM.

The numerical value Ramin
st in Fig. 2 corresponds

to a point on the neutral curve separating the regi-
ons of stable and unstable disturbances. It can
be seen here that with an increase in the coe�-
cient the minimum value of the critical Raylei-
gh number decreases, i.e. the threshold for the
development of instability decreases. A numerical
estimate of the coe�cient RTM was carried out
for the physical parameters of the Earth's core:
ρ0 ≈ 7 · 103 kg/m3 is the density of molten iron,
cp ≈ 835 J/kg· K is speci�c heat [25] and κ = 39
W/m· K is the thermal conductivity coe�cient for
iron in the molten state [25]. These parameters give
the value of the thermal di�usivity χ = κ/ρ0cp ≈
6.7 · 10−6 m2/s, which turns out to be much less
than the magnetic viscosity coe�cient η = 1/µσ ≈
2.65 m2/s: η � χ. The value RTM ≈ 2 was obtai-
ned for variations of the thermoelectromotive force
coe�cient ∆α = 3 · 10−4 V/K and temperature
∆T = 2000 K, and with the increase RTM ≈ 20
of the variations of the thermoelectromotive force
coe�cient to ∆α ≈ 10−3 V/K.

2. If the medium rotates nonuniformly (Ro 6= 0) but
without an external magnetic �eld (B0 = 0), then
expression (15) takes the form

Rast =
(k2 + π2)3

k2
+
π2Ta
k2

(1 + Ro)

− RTM

(
k2 + π2 +

π2Ta
(k2 + π2)2

(1 + Ro)

)
. (17)

We also obtained the well-known result [26] for the
case of a non-conductive (σ = 0) and uniformly
rotating (Ro = 0) medium from expression (17):

Rast =
(k2 + π2)3

k2
+
π2Ta
k2

.

Fig. 2. Dependence of the stationary Rayleigh number Rast
on wavenumbers k in the absence of rotation Ta = 0 and
magnetic �eld B0 = 0. Curve 1 corresponds to the parameter
value RTM = 0, curve 2 � RTM = 2, curve 3 � RTM = 20.

Fig. 3. Dependence of the stationary Rayleigh number Rast
on the wavenumbers k for a medium uniformly rotating with
the Taylor number Ta = 946 (Ro = 0) without an external
magnetic �eld B0 = 0 . Curve 1 corresponds to the parameter
value RTM = 0, curve 2 � RTM = 2, curve 3 � RTM = 20.

Similarly, we calculated the minimum value of the
critical Rayleigh number Ramin

st using formula (17)
at k = kc, which satis�es the following relation

2

(
kc
π

)6

+ 3

(
kc
π

)4

= 1 +

(
k4
c

π6

)
RTM

+
Ta
π4

(1 + Ro)

(
1− RTM

k4
c

(k2 + π2)3

)
.

Fig. 3 shows the dependence of the critical (stati-
onary) Rayleigh number Rast (17) on wavenumbers
k in the presence RTM 6= 0 and absence RTM = 0

2401-7



M. I. KOPP, K. N. KULIK, A. V. TUR, V. V. YANOVSKY

of the in�uence of TM e�ects. Here we observe that
with the increase of the coe�cient RTM the mini-
mum value of the critical Rayleigh number Ramin

st ,
for a uniformly rotating medium with the Taylor
number Ta = 946, decreases, i.e. the threshold
for the development of instability decreases. The
Taylor number Ta = 946 was calculated for the
parameters of the Earth's core: Ω0 = 4 · 10−5 s−1

is the angular velocity of rotation; ν = 2.6 m2/s
is the coe�cient of hydrodynamic viscosity, which
is considered equal to the coe�cient of magnetic
viscosity Pm = 1; h = 103 m is the thi-
ckness of the convective layer. The estimates of
the physical values of the Earth's core given in
[25] have a fairly wide interval so we chose the
above values of density ρ0, electrical conducti-
vity σ, thermal di�usivity χ, viscosity (ν, η),
temperature T0, thermoelectromotive force coe�-
cient α, etc. convenient for numerical calculati-
ons and reasonable physical interpretation of the
results.

Next, we �x the value of the coe�cient RTM = 2,
and the Rossby number Ro will be varied. Fig. 4
shows that with the increase of the positive pro�le
of the Rossby number Ro the minimum value of
the critical Rayleigh number also increases Ramin

st ,
i.e., the threshold for the development of instabi-
lity increases. On the other hand, we observe the
decrease of the critical Rayleigh number for negati-
ve rotation pro�les (Ro = −1) (curve 3), i.e. the
threshold for the development of instability is lower
compared to the case of a uniform (Ro = 0) (curve
2) and nonuniform (Ro = 2) (curve 1) rotation.

3. Let us consider the case when there is no rotation
(Ta = 0,Ro = 0) but there is an external magnetic
�eld (B0 6= 0). Then from expression (15) we found
the critical value of the Rayleigh number:

Rast =
(k2 + π2)3

k2
·
(

1 +
π2Q

(k2 + π2)2

)
− RTM(k2 + π2). (18)

If RTM = 0, then we may obtain the result known
from monograph [26]. The minimum value of the
critical Rayleigh number Ramin

st is determined from
formula (18) at k = kc, which satis�es the following
relation

2

(
kc
π

)6

+ 3

(
kc
π

)4

= 1 +
Q
π2

+ RTM

(
k4
c

π6

)
The graph in Fig. 5 shows the dependence of the
critical (stationary) Rayleigh number Rast (18) on
the wavenumbers k. The magnitude of the external
poloidal (or meridional) magnetic �eld emerging
from the core to the Earth's surface is of the order
of B0 = 10−1 T [25], which will correspond to the
Chandrasekhar number Q = 1.68 · 105. In Fig. 5
we observe the decrease of the minimum critical
Rayleigh number Ramin

st with an increase of the

coe�cient RTM, which corresponds to a decrease
of the threshold for the development of instability.
Curve 1 is plotted for the case RTM = 0, curve 2
� RTM = 2, curve 3 � RTM = 20.

Thus, the conclusions about the lowering of the
threshold of convective instability taking into
account TM e�ects remain valid even in the
presence of an external magnetic �eld.

Fig. 4. Dependence of the stationary Rayleigh number Rast
on wavenumbers k for an inhomogeneously rotating medi-
um with the Taylor number Ta = 946 without an external
magnetic �eld B0 = 0 at the constant parameter RTM = 2.
Curves 1,2,3 correspond to Rossby numbers Ro = 2, Ro = 0,

Ro = −1, respectively.

Fig. 5. Dependence of the stationary Rayleigh number Rast
on wavenumbers k for a non-rotating medium (Ta = 0) in
an external magnetic �eld B0 = 10−1 T at di�erent values
of the parameter RTM. Curves 1,2,3 correspond to RTM = 0,

RTM = 2, RTM = 20, respectively.

All the limiting cases considered above are completely
in agreement with the conclusions of Chandrasekhar's
works [26] on the suppression of convection by the e�ects
of rotation and an external magnetic �eld.
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Fig. 6. Dependence of the stationary Rayleigh number Rast on
wavenumbers k for a rotating medium ( Ta = 946, Ro = −1 )
in an external magnetic �eld B0 = 10−1 T and the magnetic
Prandtl number Pm = 1. The solid line corresponds to the
case without taking into account TM e�ects qα = 0, Rα = 0,

and the dashed line for qα 6= 0, Rα 6= 0.

Let us now proceed to study the general case of nonuni-
formly rotating stationary magnetoconvection taking
into account TM e�ects. As before, we have calculated
the convection parameters (Q,Ta,Pm, qα, Rα) using the
values of physical quantities (ρ0, ν, η, χ, T0, α,B0,Ω0) for
the Earth's core [25]: Q = 1.68 · 105, Ta = 946, Pm = 1,
qαPmPr

−1 ≈ 5.24·10−8, RαQ̃ ≈ 2.5·109. Fig. 6 shows the
minimum value of the critical Rayleigh number Ramin

st 15
for the case when there are no TM e�ects ∆α = 0 (the
medium is homogeneous in chemical composition). As
seen from Fig. 6, when TM e�ects are taken into account
the minimum critical Rayleigh number Ramin

st decreases,
i.e. the threshold for the onset of convective instabili-
ty decreases. The dependence plot Rast(k) (Fig. 6) is
built for the Rayleigh rotation pro�le (Ro = −1). The
dependence plot Rast(k) for the pro�le of uniform rotati-
on (Ro = 0) and positive pro�le (Ro = 2) has the similar
view. It follows from the results obtained above that the
generation of a magnetic �eld using TM e�ects promotes
the development of convective instability. Magnetic and
thermal perturbations are localized in convective cells on
scales of the order l ∼ k−1

c .

Fig. 7. a) Diagram of a shear �ow in rotating �ows. In the local Cartesian system, this �ow is approximated as a linear shear
with velocity U0(X); b) Cartesian approximation of the problem for a nonuniformly rotating magnetic convection. Nonuniform
rotation in the local Cartesian system of coordinates consists of rotation with constant angular velocity Ω0 and shear velocity

U0 directed along the Y-axis.

IV. WEAKLY NONLINEAR REGIME OF
CONVECTION TAKING INTO ACCOUNT

THERMOMAGNETIC EFFECTS

In this section, we will consider the weakly nonlinear
convection regime, limiting ourselves, as in the previous
section, to TM e�ects associated with the inhomogenei-
ty of the thermoelectromotive force coe�cient and �
magnetization� of the heat �ux (Leduc-Righi e�ect).
By weakly nonlinear convection we mean the interacti-
on between small amplitudes of convective cells, which
can be described as follows. Let the small amplitude of
convective cells be of order O(ε1), then the interaction
of the cells with each other leads to the second harmonic
and nonlinearity of the order O(ε2), and then to nonli-
nearity O(ε3), etc. In this case, the nonlinear terms in
equations (9) are considered as perturbed response for

the linear convection problem. In this case, the Rayleigh
parameter Ra controlling convection is close to critical
Rac. Since the in�uence of unstable modes is small, our
task is to obtain an equation that describes the interacti-
on between these modes.

A. Equations of nonlinear convection in rotating
�ows of a magnetized �uid with a shear velocity

To describe the nonlinear convective phenomena in the
nonuniformly rotating layer of the electrically conducting
�uid, it is convenient to turn from the cylindrical coordi-
nate system (R,ϕ, z) to the local Cartesian (X,Y, Z)
one. If we consider a �xed region of the �uid layer wi-
th a radius R0 and angular velocity of rotation Ω0 =
Ω(R0), then the coordinates X = R − R0 correspond
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to the radial direction, Y = R0(ϕ − ϕ0) to azimuthal,
and Z = z to vertical (see Fig. 7). In this case, the
�uid layer inhomogeneous rotation can be represented
locally as the rotation with the constant angular veloci-
ty Ω0 and azimuthal shear [28] whose velocity pro�le is
locally linear U0 = −qΩ0XeY , where q ≡ −d ln Ω/d lnR
is the dimensionless shear parameter determined from
the pro�le of the angular velocity of rotation Ω(R) =
Ω0(R/R0)−q. The shear parameter q is bound up wi-
th the hydrodynamic Rossby number Ro = R

2Ω
∂Ω
∂R by

the relation q = −2Ro. Note that the accretion disk wi-
th a shear parameter q = 3/2,Ro = −3/4 corresponds

to the Keplerian disk; q = 2,Ro = −1 corresponds to
the disk with a constant angular momentum, or the
Rayleigh rotation pro�le. The case of q = 1,Ro = −1/2
corresponds to the system with a �at rotation curve, and
that of q = 0,Ro = 0 to the homogeneous (or solid-state)
rotation with a constant angular velocity. As before, we
assume that the direction of the external magnetic �-
eld B0 coincides with the axis of rotation of the �uid
Ω ‖ OZ.
The equations for the perturbations (u =

(uX , uY , uZ), b = (bX , bY , bZ), p, θ) in the local
Cartesian coordinate system take the following form:

(
∂

∂t
− ν∇2

)
uX + (u · ∇)uX − 2Ω0uY = − 1

ρ0

∂p̃

∂X
+

1

µρ0
(b · ∇)bX +

B0

µρ0

∂bX
∂Z

, (19)

(
∂

∂t
− ν∇2

)
uY + (u · ∇)uY + 2Ω0uX(1 + Ro) =

1

µρ0
(b · ∇)bY +

B0

µρ0

∂bY
∂Z

, (20)

(
∂

∂t
− ν∇2

)
uZ + (u · ∇)uZ = − 1

ρ0

∂p̃

∂Z
+ gβT θ +

1

µρ0
(b · ∇)bZ +

B0

µρ0

∂bZ
∂Z

, (21)

(
∂

∂t
− η∇2

)
bX −B0

∂uX
∂Z

+ (u · ∇)bX − (b · ∇)uX = 0, (22)

(
∂

∂t
− η∇2

)
bY −B0

∂uY
∂Z
− 2Ω0RobX + (u · ∇)bY − (b · ∇)uY =

∆α

h

∂θ

∂X
, (23)

(
∂

∂t
− η∇2

)
bZ −B0

∂uZ
∂Z

+ (u · ∇)bZ − (b · ∇)uZ = 0, (24)

(
∂

∂t
− χ∇2

)
θ − uZ ·

∆T

h
+ (u · ∇)θ = − αT0

ρ0cpµh

(
∆α

α
+

∆T

T0

)
∂bY
∂X
− χ∧

∆T

h

∂bY
∂X

− 1

ρ0cpµ

(
−α ∂θ

∂X

∂bY
∂Z

+ α
∂θ

∂Z

∂bY
∂X

+ θ
∆α

h

∂bY
∂X

)
− χ∧

(
∂bY
∂X

∂θ

∂Z
− ∂bY

∂Z

∂θ

∂X

)
, (25)

where the pressure p̃ also includes the perturbed magnetic pressure pm = 1
2µ

(
2B0 · b + b2

)
: p̃ = p+pm. In equations

(19)�(25), we assumed that all perturbed quantities depend only on two variables (X,Z), i.e., we consider the
dynamics of axisymmetric perturbations. The solenoidality equations for axisymmetric velocity and magnetic �eld
perturbations take the form

∂uX
∂X

+
∂uZ
∂Z

= 0,
∂bX
∂X

+
∂bZ
∂Z

= 0. (26)

Considering equations (26), we can introduce two scalar functions: hydrodynamic stream function ψ and magnetic
φ, for which the following relations hold:

uX = −∂ψ
∂Z

, uZ =
∂ψ

∂X
, bX = − ∂φ

∂Z
, bZ =

∂φ

∂X
.

It is convenient to transform Eqs. (19)�(25) to dimensionless variables using terms of stream function ψ and function
φ

(X,Z) = h(x∗, z∗), t =
h2

ν
t∗, ψ = χψ∗, φ = hB0φ

∗,
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uY =
χ

h
v∗, bY = B0ṽ

∗, θ = (∆T )θ∗.

Omitting the asterisk, we rewrite these equations in dimensionless variables:(
∂

∂t
−∇2

)
∇2ψ +

√
Ta
∂v

∂z
− PrPm−1 Q

∂

∂z
∇2φ− Ra

∂θ

∂x
= PrPm−1Q · J(φ,∇2φ)− Pr−1 · J(ψ,∇2ψ),

(
∂

∂t
−∇2

)
v −
√
Ta(1 + Ro)

∂ψ

∂z
− PrPm−1Q

∂ṽ

∂z
= PrPm−1Q · J(φ, ṽ)− Pr−1 · J(ψ, v),

(
∂

∂t
− Pm−1∇2

)
φ− Pr−1 ∂ψ

∂z
= −Pr−1J(ψ, φ), (27)

(
∂

∂t
− Pm−1∇2

)
ṽ − Pr−1 ∂v

∂z
+ Ro

√
Ta
∂φ

∂z
− Pm−1Rα

∂θ

∂x
= Pr−1(J(φ, v)− J(ψ, ṽ)),

(
Pr

∂

∂t
−∇2

)
θ − ∂ψ

∂x
+ qα

∂ṽ

∂x
= −J(ψ, θ)− q(1)

α θ · ∂ṽ
∂x

+ q(2)
α J(θ, ṽ),

where new designations for dimensionless parameters are introduced

q(1)
α =

∆αB0

ρ0cpµχ
, q(2)

α =
αB0

ρ0cpµχ

(
µL
α

+ 1

)
.

This system of equations is supplemented with the
following boundary conditions:

ψ
∣∣∣
z=0,h

= ∇2ψ
∣∣∣
z=0,h

=
dv

dz

∣∣∣
z=0,h

= ṽ
∣∣∣
z=0,h

= 0,

dφ

dz

∣∣∣
z=0,h

= θ
∣∣∣
z=0,h

= 0. (28)

In the absence of thermal and thermomagnetic
phenomena, the system of equations (27) was used to
study the saturation mechanism of the standard MRI
[29]. In the case when there are no TM e�ects, the system
of equations (27) was used to study weakly nonlinear and
chaotic convection regimes in a nonuniformly rotating
plasma in an axial magnetic �eld [23].

B. Equation of �nite amplitude for stationary
convection

We will obtain an equation for the �nite ampli-
tude of the magnetic �eld generated by the Rayleigh�
Benard convection and thermomagnetic instability in a
nonuniformly rotating electrically conductive �uid in an
external uniform magnetic �eld using the weakly nonli-
near theory (see for example [30]). We represent all the
variables in equations (27) in the form of an asymptotic

expansion:

Ra = Rac + ε2Ra2 + ε4Ra4 + . . . ,

ψ = εψ1 + ε2ψ2 + ε3ψ3 + . . . ,

v = εv1 + ε2v2 + ε3v3 + . . . ,

φ = εφ1 + ε2φ2 + ε3φ3 + . . . ,

ṽ = εṽ1 + ε2ṽ2 + ε3ṽ3 + . . . , (29)

θ = εθ1 + ε2θ2 + ε3θ3 + . . . ,

where ε is the small parameter of the expansion, which
is the relative deviation of the Rayleigh number Ra from
the critical value Rac:

ε2 =
Ra− Rac

Rac
� 1.

We assume that the amplitudes of the perturbed quanti-
ties depend only on the slow time τ = ε2t. Substituting
expansions (29) into the system of equations (27), we
solve it for di�erent orders in ε. For simplicity, we will
take into account the nonlinear terms in (27) only in the
heat balance equation.
In the �rst order in ε, we obtain the equation

L̂M1 = 0, (30)

where

M1 =


ψ1

v1

φ1

ṽ1

θ1

 ,
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L̂ is the matrix operator of the form:

L̂ =



−∇4
√
Ta ∂

∂z −Q̃ ∂
∂z∇

2 0 −Rac ∂∂x
−
√
Ta(1 + Ro) ∂∂z −∇2 0 −Q̃ ∂

∂z 0
−Pr−1 ∂

∂z 0 −Pm−1∇2 0 0

0 −Pr−1 ∂
∂z Ro

√
Ta ∂

∂z −Pm
−1∇2 −Pm−1Rα

∂
∂x

− ∂
∂x 0 0 qα

∂
∂x −∇2


.

The solutions of the system of equations (30) with the boundary conditions of (IVA) have, respectively, the form:

ψ1 = A(τ) sin kcx sinπz, φ1 =
A(τ)πPm
a2 Pr

sin kcx cosπz,

θ1 =
A(τ)kc
a2

(1 + qα ·Πα) cos kcx sinπz, ṽ1 = −ΠαA(τ) sin kcx sinπz,

(31)

v1 =
π
√
Ta[(1 + Ro)(a4 − k2

cqαRα) + π2QPmRo]− πk2
c Q̃Rα

a2(a4 + π2Q− k2
cqαRα)

A(τ) sin kcx cosπz,

where

Πα =
π2PmPr−1

√
Ta(1 + Ro(1− Pm)) + k2

cRα
a4 + π2Q− k2

cqαRα
.

The critical value of the Rayleigh number Rac for stationary convection is found from the �rst equation of system
(30) and has the form of the formula (15) obtained in the linear theory. The amplitude A(τ) is still unknown.
For the second-order in ε, we have the following equation:

L̂M2 = N2, (32)

where M2 =


ψ2

v2

φ2

ṽ2

θ2

, N2 =


N21

N22

N23

N24

N25

,
N21 = N22 = N23 = N24 = 0,

N25 = −
(
∂ψ1

∂x

∂θ1

∂z
− ∂θ1

∂x

∂ψ1

∂z

)
− q(1)

α θ1
∂ṽ1

∂x
+ q(2)

α

(
∂θ1

∂x

∂ṽ1

∂z
− ∂θ1

∂z

∂ṽ1

∂x

)
.

Using solutions (31) and boundary conditions (IVA), we can �nd solutions of equations (32):

ψ2 = 0, φ2 = 0, v2 = 0, ṽ2 = 0,

θ2 = −A
2(τ)k2

c

8πa2

(
1− q(2)

α ·Πα

)
(1 + qα ·Πα) sin(2πz). (33)

To analyze the intensity of the heat transfer, a horizontally-averaged heat �ux is introduced at the boundary of the
layer of the electrically conducting �uid (Nusselt number)

Nu(τ) = 1 +

[
kc
2π

2π/kc∫
0

(
∂θ2
∂z

)
dx

]
z=0[

kc
2π

2π/kc∫
0

(
∂T0

∂z

)
dx

]
z=0

= 1 +
k2
c

4a2
A2(τ). (34)
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The heat �ow intensity (of Nusselt number Nu) will be analyzed after the expression for the amplitude A(τ) is
obtained.
For the third order of ε we can �nd:

L̂M3 = N3, (35)

where M3 =


ψ3

v3

φ3

ṽ3

θ3

, N3 =


N31

N32

N33

N34

N35

;

N31 = − ∂

∂τ
∇2ψ1 + Ra2

∂θ1

∂x
=

(
a2 ∂A(τ)

∂τ
− Ra2

k2
cA(τ)

a2
(1 + qα ·Πα)

)
sin kcx sinπz,

N32 = −∂v1

∂τ
= −π

√
Ta[(1 + Ro)(a4 − k2

cqαRα) + π2QPmRo]− πk2
c Q̃Rα

a2(a4 + π2Q− k2
cqαRα)

∂A(τ)

∂τ
sin kcx cosπz,

N33 = −∂φ1

∂τ
= −πPm

a2 Pr
· ∂A(τ)

∂τ
sin kcx cosπz

N34 = −∂ṽ1

∂τ
= Πα ·

∂A(τ)

∂τ
sin kcx sinπz,

N35 = −Pr
∂θ1

∂τ
− ∂ψ1

∂x

∂θ2

∂z
− q(1)

α θ2
∂ṽ1

∂x
− q(2)

α

∂θ2

∂z

∂ṽ1

∂x
= −Pr

kc
a2

∂A(τ)

∂τ
cos kcx sinπz

+
k3
cA

3(τ)

4a2
(1− q(2)

α ·Πα)2(1 + qα ·Πα) cos kcx sinπz cos 2πz

− q(1)
α ·

k3
cA

3(τ)

8πa2
(1− q(2)

α ·Πα)(1 + qα ·Πα)Πα cos kcx sinπz sin 2πz.

The solvability condition for the chain of nonlinear equations (32), (35) is known as Fredholm's alternative (see, for
example, [31]) 〈

M†1 , R.H.
〉

= 0, (36)

where R.H. are the right sides of the perturbed equations with nonlinear terms. The matrix M†1 = (ψ†1, θ
†
1, φ
†
1, v
†
1)Tr

is a nontrivial solution to the linear self-adjoint problem L̂†M†1 = 0, where L̂† is a self-adjoint operator, which is
determined from the following relation 〈

M†1 , L̂M1

〉
≡
〈
L̂†M†1 ,M1

〉
, (37)

where 〈, 〉 is the inner product, which here has the following de�nition:

〈f ,g〉 =

1∫
z=0

2π/kc∫
x=0

f · g dxdz.

Using expression (36), we write the Fredholm solvability condition for third-order O(ε3) equations (35) in the following
form:

1∫
z=0

2π/kc∫
x=0

[
K̂M̂ψ†1 · R31 − Rac

∂

∂x
K̂θ†1 · R32 + Q̃∇2K̂M̂φ†1 · R33+ +

√
Ta

∂

∂z
M̂v†1 · R34

]
dxdz = 0, (38)
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where the notations are introduced

K̂ =
√
TaP̂

∂

∂z

(
∇4 + qαRα

∂2

∂x2

)
+ Q̃Rα

∂3q̂

∂x2∂z
,

M̂ = − ∂2q̂

∂x∂z

(
∇4 −Q

∂2

∂z2

)
+ qαPmPr

−1
√
TaP̂

∂4

∂x∂z3
,

P̂ = (1 + Ro)∇4 −QPmRo
∂2

∂z2
, q̂ = ∇4 + qαPm

2Pr−1Ro
√
Ta

∂2

∂z2
,

R31 = N31, R32 =

(
∇4 −Q

∂2

∂z2

)
R32 + qαPmPr

−1 ∂
3R34

∂x∂z2
,

R33 = N33 Pr, R34 =

(
∇4 + qαRα

∂2

∂x2

)
R34 − Q̃Rα

∂R32

∂x
,

R32 =
∂∇2

∂z

(
∇2N35 + qαPm

∂N34

∂x

)
+ qαPm

2Pr−1Ro
√
Ta
∂3N33

∂x∂z2
,

R34 = −∇4N32 + QPr
∂

∂z
∇2N34 +

√
TaQPmPrRo

∂2N33

∂z2
.

Expressions for ψ†1, θ
†
1, φ
†
1, v
†
1 are determined from the solution of the linear self-adjoint problem L̂†M†1 = 0:

ψ†1 = A(τ) sin kcx sinπz,

θ†1 = −A(τ)kc
a2

(1 + qα ·Πα) cos kcx sinπz,

φ†1 = −A(τ)πPm
a2 Pr

sin kcx cosπz,

v†1 = −π
√
Ta[(1 + Ro)(a4 − k2

cqαRα) + π2QPmRo]− πk2
c Q̃Rα

a2(a4 + π2Q− k2
cqαRα)

·A(τ) sin kcx cosπz.

The self-adjoint matrix operator L̂† takes the following form:

L̂† =


∇4K̂M̂ −Rac ∂∂x K̂M̂ −Q̃ ∂

∂z∇
2K̂M̂

√
Ta ∂

∂z K̂M̂

−Rac ∂∂x K̂M̂ Rac ∂∂x K̂N̂ 0 0

−Q̃ ∂
∂z∇

2K̂M̂ 0 Q̃PrPm−1∇4K̂M̂ 0
√
Ta ∂

∂z K̂M̂ 0 0 −
√
Ta ∂

∂z L̂M̂

 .

Here the notations for new operators are inroduced

L̂ = qαRαQ
∂4∇2

∂x2∂z2
+∇2

(
∇4 −Q

∂2

∂z2

)(
∇4 + qαRα

∂2

∂x2

)
,

N̂ = −∂∇
2

∂z

(
∇4 −Q

∂2

∂z2

)(
∇4 + qαRα

∂2

∂x2

)
− qαRαQ

∂5∇2

∂x2∂z3
.
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Fig. 8. Dependence of the Nusselt number Nu on time τ . The dashed line shows the case without taking into account TM
e�ects and the solid line with taking into account TM e�ects.

Fig. 9. Dependence of the generated magnetic �eld amplitude ṽ(τ) on time τ . The steady-state amplitude ṽ(τ) taking into
account TM e�ects (solid line) is approximately 104 times greater than in the case without TM e�ects (dashed line).

By integrating (38), we can obtain a nonlinear equati-
on for the amplitude A(τ), which refers to the Ginzburg�
Landau equation or the Bernoulli di�erential equation
with constant coe�cients A1,2,3:

A1
∂A

∂τ
−A2A+ A3A

3 = 0. (39)

Because of their cumbersome form, expressions A1,2,3 are
given in Appendix B. In the limiting case, when TM
e�ects are absent (qα = 0, Rα = 0), the equation (39)
corresponds to the well-known result [32]. It is easy to
obtain an analytical solution (39) with a known initial
condition A0 = A(0):

A(τ) =
A0√

A3

A2
A2

0 +
(

1−A2
0

A3

A2

)
exp

(
− 2τA2

A1

) . (40)

With the help of solution (40), we can determine
the change in the magnitude of heat transfer (Nusselt
number Nu ) and the amplitude of the generated
magnetic �eld ṽ(τ) from time τ using formula (34). When
performing calculations, we take the initial amplitude
equal to A0 = 0.7 and Ra2 ≈ Rac, which corresponds
to the smallness of the supercriticality parameter ε.
Constant convection parameters Q1 = Q/π2 = 17000,

T1 = Ta/π4 = 10, R1 = Ra/π4 = 20000, Pm = 1,
Pr = 380000 correspond to the previously adopted
parameters of the Earth's core and the external magnetic
�eld B0 = 10−1 T. The pro�le of nonuniform rotati-
on (Rossby number) is assumed to be Rayleigh, i.e.
Ro = −1. The graph of the dependence of the Nusselt
number Nu(τ) for the above parameters is shown in Fig.
8. Here, the dashed line corresponds to the case without
taking into account TM e�ects, and the solid line � wi-
th taking into account TM e�ects. The graphs show the
establishment of the �nal value Nu(τ), due to the relati-
onship between the number Nu(τ) and the amplitude
A(τ) (see formula (34)). The excess of the number Nu
over one is due to the occurrence of convection. When
TM e�ects are taken into account, heat transfer due to
convection decreases, since convective instability reaches
a stationary level at a lower value of the �nal amplitude.
In this case, a part of the thermal energy is transformed
into the energy of the generated magnetic �eld. The
graph in Fig. 9 shows the establishment of a �nite ampli-
tude for the generated disturbances of the toroidal (Y -
component) magnetic �eld. Hence, it can be seen that
when the TM e�ects are taken into account, the ampli-
tude of the exciting magnetic �eld increased by about a
factor of 104 (!)
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Thus, convective processes taking into account TM
phenomena play an essential role in the generation of
magnetic �elds in a nonuniformly rotating electrically
conducting �uid.

V. CONCLUSION

In this paper, we consider the mechanism of magnetic
�eld generation in a nonuniformly rotating electrically
conductive �uid by TMI, which occurs at collinear
temperature ∇T0 and thermoelectromotive force coe�-
cient ∇α gradients: [∇α × ∇T0] = 0. The gradient of
the thermoelectromotive force coe�cient ∇α is caused
by the inhomogeneity of the chemical composition of
the electrically conductive �uid. We have investigated
the generation of a magnetic �eld by TMI in a nonuni-
formly rotating layer of an electrically conductive �uid
in a constant vertical magnetic B0‖OZ and a gravitati-
onal −g‖OZ �eld. In the linear approximation, we obtai-
ned the dispersion equation for axisymmetric perturbati-

ons, from which the critical Rayleigh number Rac was
determined for the stationary convection regime. The
performed analysis of the stationary convection regi-
me showed that the threshold for the development of
convective instability decreases for a negative rotation
pro�le (Ro < 0). Also, the threshold for the development
of convective instability taking into account TM e�ects
also decreases for any pro�le of a nonuniform rotati-
on, i.e. has a destabilizing e�ect. We investigated the
weakly nonlinear stage of stationary convection taking
into account TM e�ects using perturbation theory in the
small supercriticality parameter ε =

√
(Ra− Rac)/Rac

of the stationary Rayleigh number Rac and obtained the
nonlinear Ginzburg�Landau equation for the convection
amplitude. From the solution of this equation, it follows
that the generated toroidal magnetic �eld reaches a stati-
onary level.
The results obtained in this work can �nd application

in various problems of the magnetic geodynamo, as well
as in laboratory studies on rotating magnetic convection
taking into account thermomagnetic phenomena.
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�ÅÍÅÐÀÖIß ÌÀÃÍIÒÍÎÃÎ ÏÎËß ÒÅÐÌÎÌÀÃÍIÒÍÈÌÈ ÅÔÅÊÒÀÌÈ Â ØÀÐI
ÅËÅÊÒÐÎÏÐÎÂIÄÍÎ� ÐIÄÈÍÈ, ßÊÈÉ ÍÅÎÄÍÎÐIÄÍÎ ÎÁÅÐÒÀ�ÒÜÑß

Ì. É. Êîïï1, Ê. Ì. Êóëèê1, À. Â. Òóð3, Â. Â. ßíîâñüêèé1,2

1Iíñòèòóò ìîíîêðèñòàëiâ, ÍÀÍ Óêðà¨íè, ïðîñï. Íàóêè, 60, 61001 Õàðêiâ, Óêðà¨íà,
2Õàðêiâñüêèé íàöiîíàëüíèé óíiâåðñèòåò iìåíi Â. Í. Êàðàçiíà, ìàéäàí Ñâîáîäè, 4, 61022, Õàðêiâ, Óêðà¨íà,

3Òóëóçüêèé óíiâåðñèòåò [UPS], CNRS, Iíñòèòóò âèâ÷åííÿ àñòðîôiçèêè òà ïëàíåòîëîãi¨, àâ. Ïîëêîâíèêà Ðîøå,

BP 44346, 31028, Òóëóçà Cedex 4, Ôðàíöiÿ

Ó ñòàòòi ðîçãëÿíóòî  åíåðàöiþ ìàãíiòíèõ ïîëiâ ó øàði ñêií÷åííî¨ òîâùèíè åëåêòðîïðîâiäíî¨
ðiäèíè, ÿêèé íåîäíîðiäíî îáåðòà¹òüñÿ çà ðàõóíîê òåðìîìàãíiòíî¨ (ÒÌ) íåñòiéêîñòi. Öÿ íåñòàáiëü-
íiñòü âèíèêà¹ ÷åðåç  ðàäi¹íò òåìïåðàòóðè ∇T0 i  ðàäi¹íò ïèòîìî¨ òåðìîåðñ ∇α. Íåîáõiäíîþ óìîâîþ
âèíèêíåííÿ ÒÌ íåñòiéêîñòi ¹ êîëiíåàðíiñòü  ðàäi¹íòiâ òåìïåðàòóðè ∇T0 i ïèòîìî¨ òåðìîåðñ ∇α. Ðîç-
ãëÿíóòî  åíåðàöiþ àçèìóòàëüíîãî (òîðî¨äàëüíîãî) ìàãíiòíîãî ïîëÿ â òîíêîìó øàði åëåêòðîïðîâiä-
íî¨ ðiäèíè, ÿêèé íåîäíîðiäíî îáåðòà¹òüñÿ, ùî âèíèêà¹ ÷åðåç óñòàíîâëåííÿ ïîçèòèâíîãî çâîðîòíîãî
çâ'ÿçêó â ñèñòåìi çàâäÿêè åôåêòàì íåîäíîðiäíîñòi ïèòîìî¨ òåðìîåðñ i Ëåäþêà�Ðè i. Íà âåðòèêàëü-
íèõ ìåæàõ øàðó ïiäòðèìóþòüñÿ ïîñòiéíi çíà÷åííÿ òåìïåðàòóðè é ïèòîìî¨ òåðìîåðñ, ïðè÷îìó íèæíÿ
ïîâåðõíÿ øàðó ìà¹ âèùó òåìïåðàòóðó, íiæ âåðõíÿ. Ó ðîáîòi äîñëiäæåíî ëiíiéíó é íåëiíiéíó ñòàäi¨
êîíâåêòèâíî¨ íåñòiéêîñòi ç óðàõóâàííÿì  åíåðàöi¨ ìàãíiòíîãî ïîëÿ. Îòðèìàíî çàãàëüíå äèñïåðñiéíå
ðiâíÿííÿ äëÿ îñåñèìåòðè÷íèõ ∂/∂ϕ = 0 çáóðåíü, ùî îïèñó¹ ëiíiéíó ñòàäiþ êîíâåêòèâíî¨ íåñòiéêî-
ñòi. Ó ñòàöiîíàðíîìó ðåæèìi êîíâåêöi¨ âñòàíîâëåíî, ùî  åíåðàöiÿ òîðî¨äàëüíîãî ìàãíiòíîãî ïîëÿ çà
ðàõóíîê ÒÌ íåñòiéêîñòi iñòîòíî çíèæó¹ ïîðiã ðîçâèòêó êîíâåêòèâíî¨ íåñòiéêîñòi â øàði çàìàãíi÷å-
íî¨ åëåêòðîïðîâiäíî¨ ðiäèíè, ÿêèé íåîäíîðiäíî îáåðòà¹òüñÿ çà áóäü-ÿêîãî ïðîôiëþ íåîäíîðiäíîãî
îáåðòàííÿ (÷èñëà Ðîññáè Ro). Äëÿ îïèñó íåëiíiéíèõ êîíâåêòèâíèõ ÿâèù âèêîðèñòàíî ëîêàëüíó äå-
êàðòîâó ñèñòåìó êîîðäèíàò, ó ÿêié íåîäíîðiäíå îáåðòàííÿ øàðó ðiäèíè çîáðàæåíî ó âèãëÿäi îáåð-
òàííÿ ç ïîñòiéíîþ êóòîâîþ øâèäêiñòþ Ω0 é àçèìóòàëüíèì çñóâîì U0(X), ïðîôiëü øâèäêîñòi ÿêîãî
ëîêàëüíî ëiíiéíèé. Óíàñëiäîê çàñòîñóâàííÿ ìåòîäó òåîði¨ çáóðåíü äëÿ ìàëîãî ïàðàìåòðà íàäêðè-
òè÷íîñòi ε =

√
(Ra− Rac)/Rac ñòàöiîíàðíîãî ÷èñëà Ðåëåÿ Rac îòðèìàíî íåëiíiéíå ðiâíÿííÿ òèïó

�iíçáóð à�Ëàíäàó. Öå ðiâíÿííÿ îïèñó¹ åâîëþöiþ êiíöåâî¨ àìïëiòóäè çáóðåíü. ×èñëîâå ðîçâ'ÿçàííÿ
öüîãî ðiâíÿííÿ äîçâîëèëî âèçíà÷èòè òåïëîïåðåíîñ ó øàði ðiäèíè ç ÒÌ-åôåêòàìè i áåç íèõ. Ïîêàçà-
íî, ùî àìïëiòóäà ñòàöiîíàðíîãî òîðî¨äàëüíîãî ìàãíiòíîãî ïîëÿ ïîìiòíî çáiëüøó¹òüñÿ ç óðàõóâàííÿì
ÒÌ-åôåêòiâ.

Êëþ÷îâi ñëîâà: òåðìîåëåêòðîðóøiéíà ñèëà,  åíåðàöiÿ ìàãíiòíèõ ïîëiâ, êîíâåêöiÿ Ðåëåÿ�
Áåíàðà, ñëàáîíåëiíiéíà òåîðiÿ, ðiâíÿííÿ �iíçáóð à�Ëàíäàó.
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