Journal of Physical Studies 25(3), Article 3701 [6 pages] (2021)
DOI: https://doi.org/10.30970/jps.25.3701

PHOTOLUMINESCENCE ANALYSIS OF SHALLOW ACCEPTOR IN CdTe FILMS ON GaAs(100) SUBSTRATES

Chikara Onodera1 , Masaaki Yoshida2 

1Electronic Engineering Course, Aomori Prefectural Hachinohe Technical Senior High School,
1-2-27 Koyo, Hachinohe, Aomori 031-0801, Japan
ycd1ngt@yahoo.co.jp
2Department of General Science and Education, Hachinohe National College of Technology,
16-1 Uwanotai, Tamonoki, Hachinohe, Aomori 039-1192, Japan
yoshida-g@hachinohe-ct.ac.jp

Received 29 October 2019; in final form 14 April 2021; accepted 11 May 2021; published online 13 July 2021

In this study, photoluminescence (PL) measurements are performed for analyzing shallow acceptor states in undoped cadmium telluride films on gallium arsenide substrates. PL and time-resolved photoluminescence spectra are analyzed in the vicinity of a 1.55 eV band. The residual impurity concentration in the undoped cadmium telluride film is greater than 1.5 $\times {10}^{18}$ cm$^{-3}$. By analyzing the peak shift of the 1.55 eV band as a function of time after pulsed excitation, the bound-to-bound reaction constant for the undoped cadmium telluride film on a gallium arsenide substrate is estimated to be 2.4 $\times {10}^{7}$ s$^{-1}$.

Key words: cadmium telluride, photoluminescence, time-resolved photoluminescence, acceptor impurity element

Full text


References
  1. K. Yasuda et al., Jpn. J. Appl. Phys. 41, L1109 (2002);
    Crossref
  2. I. B. Bhat, N. R. Taskar, S. K. Ghandhi, J. Vac. Sci. Technol. A 4, 2230 (1986);
    Crossref
  3. S. H. Song, J. Wang, Y. Ishikawa, S. Seto, M. Isshiki, J. Cryst. Growth 237–239, 1726 (2002);
    Crossref
  4. W. Stadler et al., Phys. Rev. B 51, 10619 (1995);
    Crossref
  5. P. J. Dean, G. M. Williams, G. Blackmore, J. Phys. D 17, 2291 (1984);
    Crossref
  6. C. Onodera, M. Yoshida, T. Taguchi, Jpn. J. Appl. Phys. 49, 081201 (2010);
    Crossref
  7. C. Onodera, M. Yoshida, T. Taguchi, Jpn. J. Appl. Phys. 49, 071201 (2010);
    Crossref
  8. C. Onodera, M. Ekawa, T. Taguchi, J. Cryst. Growth 99, 459 (1990);
    Crossref
  9. T. A. Kuhn, W. Ossau, R. N. Bicknell-Tassius, G. Landwehr, Appl. Phys. Lett. 55, 2637 (1989);
    Crossref
  10. H. Y. Shin, C. Y. Sun, J. Cryst. Growth 186, 354 (1998);
    Crossref
  11. K. Ohba, C. Onodera, T. Taguchi, in Defect Control in Semiconductors (Elsevier Science, 2012), p. 1349;
    Crossref
  12. G. Kartopu, S. J. C. Irvine, in Metalorganic Vapour Phase Epitaxy (MOVPE): Growth, Materials Properties, and Applications, edited by S. J. C. Irvine and P.. Capper (John Wiley \& Sons Ltd, Hoboken, NJ, 2020), p. 325.
  13. T. Taguchi, C. Onodera, Mater. Sci. Forum 65–66, 235 (1990);
    Crossref
  14. T. Taguchi, T. Yokogawa, H. Yamashita, Solid State Commun. 49, 551 (1984);
    Crossref
  15. F. Molva, J. P. Chamonal, J. L. Pautrat, Phys. Status Solidi B 109, 635 (1982);
    Crossref
  16. O. Madelung, in Semiconductors — Basic Data, 2nd rev. ed. (Springer, Berlin, 1996), p. 186.
  17. J. M. Francou, K. Saminadayar, J. L. Pautrat, Phys. Rev. B 41, 12035 (1990);
    Crossref
  18. R. E. Halsted, M. R. Lorenz, B. Segall, J. Phys. Chem. Solids 22, 109 (1961);
    Crossref
  19. T. Taguchi, J. Shirafuji, Y. Inuishi, Jpn. J. Appl. Phys. 12, 1558 (1973);
    Crossref