Journal of Physical Studies 25(3), Article 3801 [10 pages] (2021)
DOI: https://doi.org/10.30970/jps.25.3801

EFFECT OF THE CARBONIZATION TEMPERATURE OF PLANT BIOMASS ON THE STRUCTURE, SURFACE CONDITION AND ELECTRICAL CONDUCTIVE PROPERTIES OF CARBON NANOPOROUS MATERIAL

N. Ya. Ivanichok , O. M. Ivanichok , B. I. Rachiy , P. I. Kolkovskyi , I. M. Budzulyak , V. O. Kotsyubynsky , V. M. Boychuk , L. Z. Khrushch 

Vasyl Stefanyk Precarpathian National University, 57, Shevchenko St., Ivano-Frankivsk, UA–76000, Ukraine
e-mails: bogdan.rachiy@pnu.edu.ua, lesya.khrushch@pnu.edu.ua

Received 04 June 2021; in final form 22 July 2021; accepted 19 August 2021; published online 01 October 2021

In this work, we have obtained a nanoporous carbon material (CM) from walnut shells using the method of thermal carbonization. Moreover, the influence of the carbonization temperature of the raw material on the electrical conductivity of the CM obtained by Raman, infrared (IR), and impedance spectroscopy has been investigated. Consequently, to analyze the evolution of the electrical conductivity of the material with an increase in the carbonization temperature, the theory of percolation has been applied.

Key words: carbon nanoporous material, electrical conductivity, impedance spectroscopy, Raman spectroscopy, IR spectroscopy

Full text


References
  1. M. Salanne et al., Nat. Energy 1, 16070 (2016);
    Crossref
  2. W. He et al., Adv. Energy Mat. 7, 1700983 (2017);
    Crossref
  3. B. K. Ostafiychuk, I. M. Budzulyak, M. M. Kuzyshyn, R. P. Lisovskiy, V. I. Mandzyuk, J. Nano- Electr. Phys. 5, 03049 (2013).
  4. B. E. Conway, J. Electrochem. Soc. 138, 1539 (1991).
  5. B. I. Rachiy, B. K. Ostafiychuk, I. M. Budzulyak, N. Y. Ivanichok, J. Nano- Electron. Phys. 7, 04077 (2015).
  6. L. Jiang et al., Carbon 111, 207 (2017);
    Crossref
  7. J. Wang, S. Kaskel, J. Mat. Chem. 22, 23710 (2012);
    Crossref
  8. B. K. Ostafiychuk et al., J. Nano- Electr. Phys. 11, 03036 (2019);
    Crossref
  9. M. H. Abdullah, A. N. Yusoff, J. Alloys Compd. 233, 129 (1996);
    Crossref
  10. A. C. Ferrari, J. Robertson, Phys. Rev. B 61, 14095 (2000);
    Crossref
  11. A. C. Ferrari, Diam. Rel. Mat. 11, 1053 (2002);
    Crossref
  12. J. Filik, P. W. May, S. R. J. Pearce, R. K. Wild, K. R. Hallam, Diam. Rel. Mat. 12, 974 (2003);
    Crossref
  13. J. Li et al., Appl. Surf. Sci. 191, 273 (2002);
    Crossref
  14. J. R. Shi et al., Diam. Rel. Mat. 10, 76 (2001);
    Crossref
  15. R. Hauert et al., Thin Solid Films 268, 22 (1995);
    Crossref
  16. M. A. Pimenta et al., Phys. Chem. Phys. 9, 1276 (2007);
    Crossref
  17. F. Tuinstra, J. L. Koenig, J. Chem. Phys}. 53, 1126 (1970);
    Crossref
  18. Y. Wang, D. C. Alsmeyer, R. L. McCreery, Chem. Mater. 2, 557 (1990);
    Crossref
  19. B. Dippel, J. Heintzenberg, J. Aerosol. Sci. 30, 907 (1999);
    Crossref
  20. A. Cuesta, P. Dhamelincourt, J. Laureyns, A. Martinez-Alonso, J. M. D. Tascon, Carbon 32, 1523 (1994);
    Crossref
  21. R. Al-Jishi, G. Dresselhaus, Phys. Rev. B 26, 4514 (1982);
    Crossref
  22. B. H. Stuart, Infrared Spectroscopy: Fundamentals and Applications (John Wiley \& Sons, Ltd, 2004);
    Crossref
  23. A. Galvez, M. Herlin-Boime, C. Reynaud, C. Clinard, J. N. Rouzaud, Carbon 40, 2775 (2002);
    Crossref
  24. E. Barsoukov, J. Macdonald, Impedance Spectroscopy: Theory, Experiment, and Applications, Second Edition (John Wiley \& Sons, Ltd, 2005);
    Crossref
  25. I. M. Budzulyak et al., Phys. Chem. Solid State 21, 409 (2020);
    Crossref
  26. I. I. Grigorchak, G. V. Ponedilok, Impedance Spectroscopy (Lviv Polytechnic National University Publishing House, Lviv, 2011).
  27. B. K. Ostafiychuk et al., Nanosistemi, Nanomater. Nanotehnologii 16, 303 (2018).
  28. D. Starešinić, K. Biljaković, N. I. Baklanov, S. V. Zaitsev-Zotov, Ferroelectrics 176, 335 (1996);
    Crossref
  29. A. Motaghi, A. Hrymak, G. H. Motlagh, J. Appl. Polymer Sci. 132(13), 41744 (2015);
    Crossref
  30. W. Bauhofer, J. Z. Kovacs, Compos. Sci. Technol. 69(10), 1486 (2009);
    Crossref
  31. Y. Wang, G. J. Weng, S. A. Meguid, A. M. Hamouda, J. Appl. Phys. 115(19), 193706 (2014);
    Crossref
  32. M. R. Mansor, S. H. S. M. Fadzullah, N. A. B. Masripan, G. Omar, M. Z. Akop, Functionalized Graphene Nanocomposites and their Derivatives (Elsevier, 2019);
    Crossref