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We propose a two-sublattice proton ordering model for the quasi-one-dimensional CsHyPOy4
ferroelectric with hydrogen bonds, which takes into account contributions to the energy of the
proton subsystem that are linear in the lattice strains 1, €2, €3, and 5. The model also takes into
account the dependence of the effective dipole moments of pseudospins on the order parameters,
which enables us to coordinate the values of the effective dipole moments in the paraelectric and
ferroelectric phases. Within this model in the two-particle cluster approximation for the short-range
interactions and in the mean field approximation for the long-range interactions, the behavior of
spontaneous polarization, longitudinal dielectric permittivity, piezoelectric and elastic characteristi-
cs, and molar heat capacity under the influence of uniaxial and hydrostatic pressure and a longi-

tudinal electric field are investigated.
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I. INTRODUCTION

Investigations of the external pressure and field effects
in ferroelectrics are an important problem of ferroelectri-
cs physics. High pressure studies give a possibility to
obtain additional valuable information on the peculi-
arities of the behavior of the physical properties of
ferroelectric compounds, as well as to search for new
physical effects, which are not observed under zero
pressure and zero external field. It should be also underli-
ned that these studies give an opportunity to understand

1

better the mechanisms of phase transitions in these
materials.

The ferroelectric with hydrogen bonds CsHyPOy
(CDP) is an example of a crystal, where the pressure
and field effects are essential. In this crystal, there are
two structurally non-equivalent types of hydrogen bonds
of different lengths (Fig. 1,b). The longer bonds have
one equilibrium position for protons, whereas the shorter
bonds have two equilibrium positions. They link POy,
groups into chains along the b-axis (Fig. 1,a); therefore
the crystal is quasi-one-dimensional.

-3

6“"’0_

1 X
\ (<]
o -0
) }l/uo ° ) cy
e s

Fig. 1. The primitive cell of the CsH2PO4 crystal in the ferroelectric phase
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At room temperature and zero pressure, the crystal is
in the paraelectric phase and has a monoclinic symmetry
(the space group P2;/m) [1, 2]. Protons on the shorter
bonds occupy two equilibrium positions with equal
probability. Below 7, = 153 K, the crystal goes into
the ferroelectric phase (the space group P2) [3, 4] wi-
th spontaneous polarization along the crystallographic
b-axis, and the protons occupy mainly upper equilibrium
positions (Fig. 1, a).

On the basis of dielectric measurements [5, 6] it was
determined that under pressure p. = 0.33 GPa and
TS = 124.6 K there appear double hysteresis loops,
that is, the crystal goes to the antiferroelectric phase.
By neutron scattering experiments [7] it has been establi-
shed that in the antiferroelectric phase the primitive cell
of CDP crystal doubles along the a-axis, because there
appear two sublattices in the form of bec-planes, which
are polarized antiparallelly along the b-axis and alternate
along the ae-axis. The symmetry of the crystal remai-
ns monoclinic (the space group P2;), and the constants
of the double lattice are as follows: a = 15.625 A,
b = 6254 A, ¢ = 4886 A, B = 108.08°. A signifi-
cant shift of Cs atoms and PO, groups in (a,c)-plane
and rotation of the POy groups by 36.8° around the b-
axis, which goes through the P atom, occur. The protons
on the hydrogen bonds of neighboring sublattices are
ordered antiparallelly. At very high pressures, the anti-
ferroelectric phase of a second type (AF2) appears, where
two sublattices have a form of chains along the b-axis,
which are polarized antiparallelly along b-axis and have
a checkerboard arrangement. The AF2 phase was predi-
cted in [8] on the basis of NMR data [8] and confirmed
in [9] on the basis of dielectric constant measurements at
low temperature and X-ray diffraction experiments.

Influence of hydrostatic pressure on the transition
temperature in the Cs(H;_,D, )P0y ferroelectrics was
explored in [5, 6, 9-12].

Results of experimental measurements of the
temperature dependence of spontaneous polarization of
the CsHyPO, crystal at different values of hydrostatic
pressure are presented in [6], and of the static longitudi-
nal dielectric permittivity in [6, 9, 11, 12].

The lattice dynamics of CsHoPO, and CsDyPOy
crystals was explored in [13, 14]. The phonon spectra
of these crystals and specific heat were calculated. The
obtained temperature variation of the specific heat quali-
tatively agrees with the experimental data, except for
the vicinity of the phase transition. Later, the ab ini-
tio calculations have shown an important role of proton
tunneling [15], and also the piezoelectric coefficients,
elastic constants, and specific heat of CsHoPOy [16, 17].

An attempt to theoretically describe the paraelectric-
ferroelectric and paraelectric-antiferroelectric phase
transition in CsHyPO4 and CsD3PO4 as well as experi-
mental data for the dielectric permittivity was done in
[18], where the crystal was described as pseudospin Isi-
ng chains. However, the description of the experimental
data for the dielectric constant by the proposed theory
was not considered.

Later [19], using the pseudospin model [18] and
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the two-particle cluster approximation for the short-
range configuration interactions, the thermodynamic
and dynamic characteristics of CDP type ferroelec-
trics were calculated at different values of hydrostatic
pressure. A good agreement of the theory with the
experimental data for the dielectric constant and for
the pressure dependence of the para-ferroelectric and
para-antiferroelectric phase transition temperatures was
obtained. However, in the model [18, 19] one cannot
calculate the piezoelectric and elastic characteristics of
the crystal, and the critical pressure does not depend on
temperature.

In [20], the temperature dependences of the latti-
ce strains ey, €9, €3, €5 were measured. There was
also proposed a quasi-one-dimensional Ising model for
the CsHoPOy crystal, where the interaction parameters
were linear functions of these strains. On the basis of
this model, the temperature dependences of ¢;(T") were
explained. However, this model does not consider the
crystal as two sublattices and does not allow one to
describe the ferroelectric-antiferroelectric phase transi-
tion under high pressures.

In [21], a two-sublattice model of a deformed CsHyPOy
crystal has been proposed, where the interactions
between neighboring pseudospins within a chain are
taken into account in the two-particle cluster approxi-
mation, whereas the long-range interactions (including
the interchain ones) are considered in the mean field
approximation. The interaction parameters are taken
to be linear functions of the strains ;. As a result,
the temperature dependences of spontaneous polarizati-
on, dielectric permittivity, piezoelectric coefficients, and
elastic constants were calculated.

In [22], using the model of the deformed CsH3POy
crystal, proposed in [21] the effects of hydrostatic
pressure on the phase transition temperature, longitudi-
nal static dielectric characteristics of Cs(H;_,D,)2POy4
crystals were studied.

As is well known, in the presence of the longitudinal fi-
eld E,, the second order phase transition is smeared, and
the temperature dependence of the longitudinal permi-
ttivity e,,(7) has a rounded maximum. At the same ti-
me, in [21, 22|, to calculate the longitudinal dielectric
permittivity ey,, different values for the effective dipole
moments in the paraelectric and ferroelectric phases were
used. This gives rise to a jump in the e,,(T) curve,
instead of the rounded maximum expected in presence
of the external field E,. Therefore, in order to describe
the smearing of phase transition, in [23] we have modi-
fied the model [21] by assuming that the effective di-
pole moment on a hydrogen bond depends on the order
parameter on this bond, because the order parameter
depends on temperature continuously near the phase
transition point. The behavior of spontaneous polarizati-
on, longitudinal dielectric permittivity, and molar speci-
fic heat in the presence of hydrostatic pressure and a
longitudinal electric field was explored [23].

In the present paper, we study the behavior of the
spontaneous polarization, longitudinal dielectric permi-
ttivity, piezoelectric and elastic characteristics, and
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molar specific heat of CsHy;PQy4 in the presence of uni-
axial and hydrostatic pressure, a longitudinal electric fi-
eld, considering also the case when the pressures and the
electric field are applied simultaneously.

II. THE MODEL OF THE CsH;PO, CRYSTAL

We study the system of protons in the CsHyPOy
crystal, moving on the short O-H...O bonds between
the HPO,4 groups, which form zigzag chains along the
crystallographic b-axis of the crystal (see Fig.1).

The cell contains one chain, marked as “A” in Fig. 1.
In order to describe the transition to the antiferroelectric
phase, under high pressure we shall consider an extended
primitive cell, which includes two chains (“A” and “B”).
All the “A” chains form the sublattice “A”, whereas all
the “B” chains form the sublattice “B”. Every chain in the
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primitive cell includes two neighboring PO, tetrahedra
(of type “I” and “II”) together with two short hydrogen
bonds (respectively, “1” and “2”).

Let us ascribe the dipole moments d2;, djy, d5y, d

to the protons on the bonds. The pseudospin variables
A

A B B
g g g o . . .
-2+, =2, &, -2 describe the changes associated wi-
th reordering of the respective dipole moments of the
A,B
dA,B ..o el

412 = #—%5*. The mean values (%)

%(na —ny) are related to the differences in occupancies of
the two possible positions or the protons on the bonds,
ng and ny,.

The Hamiltonian of the proton subsystem of
CsHoPO,4 takes into account the short-range and long-
range interactions. Under the stresses maintaining the
symmetry of crystal o1 = 0zg, 02 = Oyy, 03 = 0.,
o5 =0z, (X L (be), Y| b, Z| ¢), and in the presence
of electric field E; = E,, it can be written as [23]:

structure units:
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where N is the total number of extended primitive cells
of the Bravais lattice; v is their volume.

The first term in (2.1) is the “seed” energy, which
corresponds to the heavy ion sublattice and does not
explicitly depend on the configuration of the proton
subsystem. It includes the elastic, piezolectric, and di-
electric parts, expressed in terms of the electric field
FE5, and strains preserving the symmetry of the crystal
€1 = Eguy €2 = Eyy, €3 = €z, €5 = 245 cfj(?, €95, X59
(j=1,2,3,5) are the “seed” elastic constants, coefficients
of piezoelectric stress, and dielectric susceptibility of a
mechanically clamped crystal.

The second term in (2.1) is the Hamiltonian of

the short-range interactions. In (2.1), alﬁ”BQ are the z-

components of the pseudospin operator that describe the
state of the bond “1” or “2” of the chain “A” or “B”, in the
g-th cell, Ry is the lattice vector along the OY -axis. The
first and the second Kronecker delta-symbols correspond
to the interaction between protons in the chains near the

2

5 ) + 2N (n} + nS)}u’Ez,

tetrahedra POy of type “I” and of type “II”, respectively.
The contributions to the energy of interactions between
pseudospins near tetrahedra of different types are identi-
cal.

The parameter w, which describes the short-range
interactions within the chains, is expanded linearly into
a series over the strains ¢;

7 =1,2,3,5.

w=u’+> 5ye;, (2.2)

J

The term fflong in (2.1) describes the long-range
dipole-dipole interactions and indirect (via the latti-
ce vibrations) interactions between protons, taken into
account in the mean field approximation

-Hlong = NH0+]L:’27 (23)

where
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1O = gl (o8 + OB + (10812 (0B + 2allotiod) + (0P) 0B )|
+ 4ot ) + Kaalod) (oF) + K (o) o) + (P12 ) | (24
i, = { Ialod) + istod) + Kanlo?) + KisoB) ) 78+ (afol) + dale) + KialoD) + Kmlod) ) 2
b (I0008) + Talo8) + Kunlo) + Kiato) ) 78+ (alof) + dlof) + Koot + Kanlod)) 22} 29

Y. Jyplqd')and Ky =

Y- Kyy(qq') are the Fourier transforms of the long-

’

Here the parameters Jy s =

q
range interaction constants at k = 0.

Let us expand the parameters Jy ¢ i K¢y in series over
the strains €; up to the linear terms

Ju=Jn=J+Y @i

J

Jig =Jo = Jo + Z@ijja
J

K1 = Ky = K; + Zsﬁljé“j,
J

Kip = Koy = Koy + Zsﬂzj%w
J

Taking into account the following symmetry of
pseudospins in the chains

(

: oA o
H2 = zq: s (2V17}1 —+ 27/2772) 7 + 7
UB O'B
= (2vam + 2v1m2) <§1 + %2 } (2.8)

Here we used the following notations

1
i g(Ju + Jag + 2J12) = 10 + Z%lﬁp

J

1

1/? = 1(J1+J2) Pj = (60134‘9013) (2.9)
1

vy = g(Ku + Koy +2K12) = v + Ej:%'ﬁjv
1

v = S+ Ka), v = (wzﬂr%) (2.10)

The fourth term in (2.1) describes the interactions
of pseudospins with the external electric field, whereas
the term HY, takes into account the abovementioned

<Uf;1> = <0$2> =, <U§1> = (0(];’2> =12 (2.6)  dependence of effective dipole moments on the mean
) ) value of pseudospin sy
we obtain the expressions for (2.4), (2.5) as The two-particle cluster approximation for short-range
50 5 o interactions is used to calculate the thermodynamic
H” = vi(ny +m3) + 2vaming, (2.7) characteristics of CDP. In this approximation, the
thermodynamic potential is given by
J
G = NUseea + NH® +2N(n} +13) i/ B2 = Nv Y~ 0je;
J
— kgT Z {2 InSp ePHP 1y Sp e BHDY 1 Sp e~ BHD? } , (2.11)
q
where 8 = k;T’ kg is the Boltzmann constant; H(2) H(I)A Hél)B are two-particle and one-particle Hamiltonians
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given by
AO = gy (T %8 TR\ (o0 oh) e (on ok (2.12)
a 2 2 T2 2 5\ 2 T2 g\ 2 T2 ) ‘
- A A - B B
. o o . o o
FwA _ Y9 (%1 | Ta2 FgovB _ Y2 (a1 | Te2 2.13
p sl to ) M sl2to ) (2.13)
where the following notations are used
y1 = BAL + 2Bvam + 2Bvamn + B(uy B + 3031/ Ez), (2.14)
Yo = BAs + 2Bvam + 2Bv112 + By Ba + 3034’ Ea), (2.15)
Y =BA+y1, Y2 =PA2+ o
[
Here A; are the effective fields created by the nei- Hence, on the basis (2.16) with taking into account of

ghboring bonds from outside the cluster. In the cluster  (2.6), (2.12) and (2.13), we obtain the expressions for the
approximation, these fields can be determined from the  order parameters

condition of the minimum of thermodynamic potenti-
al 0G/OA; = 0, yielding the self-consistency conditi-

1 .. . .
on, which states that the mean values of the pseudospi- m =75 [sinh(y1 + y2) + sinh(y1 — y2) + 2asinhy, ]

ns <0'qu’B> calculated using two-particle and one-particle — tanh Y1
Gibbs distributions should coincide - Aniy
. . 1. . .
. Sp G(/}\fe—ﬁHff) Sp a(?fe_ﬁHél)A n = D [sinh(y; + y2) — sinh(y1 — y2) + 2asinh ys]
1= _gAa® _ag(MA -
Spe—AHq Spe~fHa = tanh y—;, (2.17)
Sp Uffe_ﬁﬁf) Sp affe_ﬂf{élm . .
Ny = - = - . (2.16)  where the following notations are used
Sp e—BH Sp L

D = cosh(y; + y2) + cosh(y; — yo) + 2a coshy; + 2a coshy, + 2a?,

—__w
a=e *BT,

Excluding the cluster fields A; from the expression n; = tanh(g;/2) (see (2.17)), we write down (2.14), (2.15) as

1 1+ 1
y1=<In n + Briny + Brane + = By By + 3ni 1/ Es),
2 T, 2
1 1+ 1
v2=35 In T 22 + Bram + Brine + §B(MyE2 + 351 Es).
— 12

III. THE STATIC LONGITUDINAL DIELECTRIC, PIEZOELECTRIC, ELASTIC, AND THERMAL
CHARACTERISTICS OF CDP

Using (2.11), we write the thermodynamic potential per one extended primitive cell as

g = Useea + H® + 2(77? + nS)u'EQ +2kgTIn2 — 2w — vZajsj
J

— kgTIn(1 —n?) — kgT'In(1 —n3) — 2kgTIn D. (3.1)

AN
8€j Es ’

Using the equilibrium condition
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we obtain a set of equations for the strains ¢;:

20; 45' 1 2
o; = chlogl + CJEQO€2 + 0%053 + chgoég — engQ —_— 4 —= D — ;7/131(775 + 775) — ;@[}jgﬁl’r]g, (32)

where
M = [a cosh y; + acosh ys + 2a2].

For hydrostatic pressure, the stresses in (3.2) are o7 = 02 = 03 = —pp, 05 = 0. For the uniaxial stresses applied
along the axis a, 01 = —p1, 09 = 03 = 05 = 0, along the axis b, 09 = —p2, 01 = 03 = 05 = 0, along the axis c,
o3 = —p3, 01 = 02 = 05 = 0. Hence we obtained the set of equations (2.17), (3.2) for the order parameters 7y and
strains €;, 5.

On the basis of thermodynamic potential (3.1) we easily obtain expressions for different thermodynamic characteri-
stics. In particular, the expression for longitudinal polarization P reads

/
Py = (8E2> Zezjfsj +x39F2 + 7(771 +m2) + (77? +n3). (3.3)

The isothermal static dielectric susceptibility of a mechanically clamped crystal is

A OP. Bit
5p = <2> = x5 + 1y YLD (11 + s219(Po — Bra)(se115020 — 235)}

0FE, 20A
Bis, . 9
+ SoA {D (5012 + 222) — (41 — PBra) (saa1302 — 575) }, (3.4)

where the following notations are used

A = D? — D[@15011 + Pasean + 2Bvasern] + [G1P2 — (Bra)?] (3113022 — 31s),

Q1 =1 +3mPBu' Ea, @2 = @2+ 321 Es,

1 1
p1 = 5 + B, 2 = —— + B,
1-n -5

firy = py +30'nt,  fizy = py + 3’03,

s11 = cosh(yy + y2) + cosh(ys — o) + 2acoshy; — 73D,
»12 = cosh(yy + y2) — cosh(yy — y2) — mneD,

99 = cosh(yy + y2) + cosh(y1 — y2) + 2a coshyo — 73 D.

The isothermal coefficients of piezoelectric stress are
0P, 1 _
ea = ( 2) = e+ (g +jizgny),  1=1.2,3,5, (3.5)
Es

where the following notations are used

' = g{(%ﬂh + Pram2) [D(5e11 + 512) — (@2 — Bra) (se11520 — 347,)]
— 4 [Dpl — P1(5V2%12 + (,52%22) + pz(ﬂVz%u + 952%12)]}3
= g{(%zm + ) [D (52 + s12) — —(P1 — Bra) (e115022 — 5215)]

— 8i[Dpa + p1(Brasea + P15012) — pa(Brasas + G15a1)]},
p1 = 2asinhy; — n1[2a coshy; + 2a coshys + 4a?],

pos = 2asinhys — 13[2a coshy; + 2a coshys + 4a?].
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The constants of piezoelectric stress are obtained by differentiating the electric field over the strains at constant

polarization
ok €2
hgi:—< 2) ==, (3.6)
Oei ) p,  X52
The calculations of the isothermal elastic constants at a constant field yield
Jo; 2 Oi .. 0 . !
05 = (8€;>E2 = 050 - 5(%‘1771 + Yiana + 51%1901 + 51%251/2)7]/1( )
2 di . 0i o\ 1
- E(¢i1772 + tiam + 5%1‘,3”2 + 5%2‘@2)77/2( )
23; 46,6
PO oy + i) + tha o + )] — g, (57)
UQ.D D

where

X
|

= sinh(y1 + y2) + sinh(y1 — y2) — mi[cosh(y1 + yo2) + cosh(yr — y2) — 2a%],

»5 = sinh(y1 + y2) — sinh(y1 — y2) — n2[cosh(y1 + y2) + cosh(yr — y2) — 2a*],

’]

C:2
p°=2a 5

The other dielectric, piezoelectric, and elastic characteri-
stics of CsHyPOy4 can be obtained from those found
above. Thus, the isothermal coefficients of the pi-
ezoelectric strain are

dyi =Y shey,  i,j=1,2,35. (3.8)
J

The matrix of the isothermal elastic compliances at a

constant field 55 is inverse to the matrix of the elastic

constants cib;

cfi cfy cfy ofi

6@_ 0{52 052 053 055
I A e
ekl ok L

5 “b5

, SE=(CE)"'. (3.9

The isothermal constants of the piezoelectric strain are

go; = Z SiEthj. (310)
J

The molar heat capacity of the proton subsystem of
CDP at constant pressure can be found by numerically
differentiating the thermodynamic potential:

T (9
4 \or2), -

J

AC, = (3.11)

where N, is the Avogadro constant.

2 [cosh(y1 + ya) + cosh(y1 — y2) — 2a

[a coshy; + acoshys + 2a?].

IV. COMPARISON OF THE THEORETICAL
RESULTS WITH THE EXPERIMENTAL DATA.
DISCUSSION

The theory parameters are determined from the condi-
tion of agreement of the calculated characteristics with
experimental data for the temperature dependences of
spontaneous polarization Py(T) and dielectric permitti-
vity e22(T) at different values of hydrostatic pressure [6],
spontaneous strains €; [20], molar heat capacity [24], and
elastic constants [25]; as well as with the results of the
ab-initio calculations of the lattice contributions to the
molar heat capacity [16] and dielectric permittivity [17].

The parameters of short-range interactions wgy and
long-range interactions /9 (“intra-sublattice”), 9 (“inter-
sublattice”) mainly determine the phase transition
temperature from the paraelectric to the ferroelectric
phase in the absence of external pressure and field;
the order of the phase transition, and the shape of
spontaneous polarization. Their optimum values are
wo/kp = 650 K, 19 /kg = 1.50 K, v /kg = 0.23 K.

To determine the deformational potentials 6; [see
(2.2)] and ;1 (2.9), 92 (2.10), it is necessary to use
experimental data for the shift of the phase transition
temperature under hydrostatic and uniaxial pressures,
as well as the data for the temperature dependences
of spontaneous strains €, piezoelectric coefficients, and
elastic constants. Unfortunately, the only available data
are those for the spontaneous strains and hydrostatic
pressure effect on the dielectric characteristics. As a
result, experimental data for the strains and dielectric
characteristics can be described using many different
combinations of the parameters 1, ;2. Therefore, for
the sake of simplicity, we chose ;2 to be proporti-

3702-7



A.S. VDOVYCH, R. R. LEVITSKII, I. R. ZACHEK, A. P. MOINA

onal to ;1. The optimum values of the deformati-
onal potentials were determined in [23]. Their values
are 01/kp = 1214K, d2/kp = 454K, é3/kp = 1728 K,
55/kB = 1214K, 65//€B = —13K, l/Jll/kB = 922K,
wQI/k/‘B = 232K, wSI/kB = 1397K, ’(/J51/]€B = 55K,
Yo = 1.

The effective dipole moment in the paraelectric phase
is found by fitting the calculated curve es3(7T) to the
experimental data. We consider it to be dependent on the
value of hydrostatic pressure p, that is, p, = ,ug( 1—k,p),
where pf) = 2.63 - 107 '8 esu-cm, k,=0.4-107'" cm?/dyn.
The correction to effective dipole moment p/ = —0.43 -
1078 esu-cm is found by fitting the calculated saturation
polarization to the experimental data.

The “seed” dielectric susceptibility x59, coefficients
of piezoelectric stress egj, and elastic constants cZ°
are found by fitting to the experimental data at

temperatures far from the phase transition temperature
T.. Their values are as follows X59=0.443 [17]; €0, =022 ;

sz,
AF — 28,83 1010 dmoEO _ qq 4. 1010 o oy =

42, 87- 1010 vy B0 = 26, 67 1010 dy 50 =14,5-1010
gg;;, B9 = 65,45-1010 &4 B0 — =5, 13100 dyg, B =
8,4- 1010 & L0 = 7 50 1010 b B0 = 5,20 1010
dyn
cm? °

The volume of the extended primitive cell is v = 0.467-
10721 cm?® [7].

Let us consider now the obtained results.

The effects of uniaxial and hydrostatic pressure are
determined, mainly, by the pressure-induced behavior of
the lattice strains ;. The temperature dependences of
the strains at ambient pressure and in presence of uni-
axial pressures are shown in Fig. 2 and in the presence
of hydrostatic pressure in Fig. 3.

§ i §
0.1 b
3, D1 oo2f 1, o] o
2, o 2 3 !
5
0.01 1 1. 2 3
0 5, 0 %o 0
/
5, 5, 0 - 0
01 0 10 20 30 21 50
0.01 3
1, 2, 1
3
0.2 0.02 0.1
100 120 140 T,K 100 120 140 71k 100 120 140 T,K
Fig. 2. The temperature dependences of the strains e; — 1, e2 — 2, €3 — 3,65 — 5 of CDP at different uniaxial pressures: p;

*3)7]32*

b), ps — c). The lower index denotes the pressure values in kbar
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Fig. 3. The temperature dependences of the strains e; — 1, €2

— 2,e3 — 3, e5 — b of CDP at different values of hydrostatic

pressure pn. The lower index denotes the pressure values in kbar

The pressure p; increases the negative value of the
strain e€; and the positive value of 3. The strains e,
€5 are not changed perceptibly. The uniaxial pressure po
increases the negative values of the strains €3 and e, as
well as the positive values of the strains €; and e5. The
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pressure p3 increases the negative values of e3, €5 and
the positive values of €; and 5. The magnitude of the
strain e is barely changed. The pressure py increases
the absolute values of the strains £; and 3 and slightly
increases the strain e5; the strain €5 is positive and hardly
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changes with an increase in py. The lattice strains ¢;
depend on pressure almost linearly, in accordance with
Hooke’s law.

160

140

120

100

80
0

Fig. 4. The dependences of the transition temperatures of
CDP on the uniaxial pi; p2; ps and hydrostatic pressures:
between the paraelectric and ferroelectric phases T¢, between
the paraelectric and antiferroelectric phases Txn, between
the ferroelectric and antiferroelectric phaes Tar at different
values of the electric field E» (MV/m): 0.0 — 1, 0.1 — 2, 0.2
—3,0.3—4,04—5,0.5 — 6. Symbols are the experimental
data of [5]. The tricritical points T} (denoted by *) separate
the curves of the first (dashed lines) and the second (solid
lines) order phase transition
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352 :
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Fig. 5. The temperature dependence of the spontaneous
polarization Ps of the CDP crystal at different values of uni-
axial pressures (p1 — 1; p2 — 2; ps — 3), hydrostatic pressure
(pn), and electric field E2. The upper index denotes the field
value in MV /m, the lower index denotes the pressure in the
units of 0.1 GPa. Dots (e) are the experimental data of [5]

External pressures weaken the interactions between
the pseudospins. The interaction parameters w, vy, Vo
decrease linearly with an increase in pressures. As a
result, the transition temperature T, decreases (Fig. 4).
From Fig. 4 it is seen that at low pressures the change
in the Curie temperature under hydrostatic pressure is
approximately equal to the sum of changes in the Curie
temperature under uniaxial pressures.

P 1072C/m?

3.5

100 120 140

Fig. 6. The temperature dependence of the spontaneous

polarization P, of the CDP crystal at different values of

hydrostatic pressure (pn) and electric field F>. The upper

index denotes the field value in MV/m, the lower index

denotes the pressure in the units of 0.1 GPa. Dots (e) are
the experimental data of [5]

x107° P, 1072C/m?

0 0.5 1 1.5 E,.0.1MV/m

Fig. 7. Dependences of the spontaneous polarization of CDP

on the electric field F2 at different values of uniaxial pressures

(p1 — 11; p2 — 21; ps — 31) and hydrostatic pressure

(h1, h2, hs, ha). The lower index denotes the pressure in the
units of 0.1 GPa

10

10}

140 145 150 155 T K

Fig. 8. The temperature dependence of the longitudinal di-

electric permittivity 22 of CDP at different values of uniaxial

pressures (p1 — 1; p2 — 2; ps — 3), hydrostatic pressure (pn),

and electric field F2. The upper index denotes the field value

in MV /m, the lower index denotes the pressure in the units
of 0.1 GPa. Dots (e) are the experimental data of [5]
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Since the transition temperature T, is lowered down by
the pressures, the temperature curves of the spontaneous
polarization Ps (Figs. 5, 6), longitudinal dielectric permi-
ttivity €90 (Figs. 8, 9), piezomoduli esr, hoy (Figs. 11-
14), elastic constant c¢;; (Figs. 16, 17), and pseudospin
contribution to the heat capacity AC (Figs. 18, 19) all
shift to lower temperatures.

In Fig. 5, we plot the temperature dependences of the

spontaneous polarization P, of CDP at different values
of the uniaxial pressures (p1;p2; p3), hydrostatic pressure
pn, and electric field Es. The temperature dependence
of the spontaneous polarization P; at different values of
hydrostatic pressure (p,) and electric field Fy is shown
in Fig. 6, whereas the dependences of P, on the electric
field E5 at different values of uniaxial and hydrostatic
pressures are shown in Fig. 7.

10°—22-

10%}

103»h2'3
02

100 110 120 130

140 150 160 T, K

Fig. 9. The temperature dependence of the longitudinal dielectric permittivity 22 of CDP at different values of hydrostatic
pressure (pn) and electric field E>. The upper index denotes the field value in MV /m, the lower index denotes the pressure in
the units of 0.1 GPa. Dots (e) are the experimental data of [5]
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Fig. 10. The temperature dependences of the coefficients of piezoelectric stress ea1 — 1, e2a — 2, eaz — 3, ea2s — 4, coefficients
of piezoelectric strain do1 — 1, d2a — 2, d2s — 3, d2s — 4, constants of piezoelectric stress hor — 1, hoo — 2, hag — 3, hos — 4,
and constants of piezoelectric strain g21 — 1, goo — 2, g2z — 3, g2s — 4 of the CDP crystal

At low pressures, the spontaneous polarization
monotonically and continuously decreases with an
increase in temperature and vanishes at T.. The phase
transition at T, is still of the second order.

The application of the external field Fs smears out
the polarization curves, and the phase transition in CDP
disappears as such.
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The electric field E> decreases the polarization. The
largest decrease is observed when the electric field and
hydrostatic pressure are applied simultaneously.

The longitudinal dielectric permittivity e9o diverges
at T, (figs. 8, 9). In the presence of the electric field Es,

the permittivity €90 has a jump at T instead of a cusp
(Fig. 9).
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2
x 10 €, esu/cm

0 . =
140 145 150 T,K

Fig. 11. The temperature dependences of the coefficient of
piezoelectric stress e2; at different values of uniaxial pressures
(p1—1; p2—2; ps—3), hydrostatic pressure (pn), and electric
field F5. The upper index denotes the field value in MV /m,
the lower index denotes the pressure in the units of 0.1 GPa

X 104 h21, dyn/esu
25 "

130 140 150 T, K

Fig. 12. The temperature dependences of the constant of pi-

ezoelectric stress hai at different values of uniaxial pressures

(p1 — 1; p2 — 2; p3 — 3), hydrostatic pressure (pn), and

electric field E5. The upper index denotes the field value in

MV /m, the lower index denotes the pressure in the units of
0.1 GPa

x 10° esu/cm?

4 €51

- -

150 T,K

0
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Fig. 13. The temperature dependences of the coefficient of pi-

ezoelectric stress ez at different values of hydrostatic pressure

(pn) and electric field F3. The upper index denotes the field

value in MV /m, the lower index denotes the pressure in the
units of 0.1 GPa

In the presence of the electric field Fo the permittivity
€99 remains finite and has maxima, whose magnitudes
decrease with an increase in the field, and which positions
shift to higher temperatures.

The theoretical results agree quantitatively well with
the experimental data of [5] for the case of hydrostatic
pressure pp. It should be mentioned that the theory
is developed for a single-domain crystal and does not
take into account the reorientation of domain walls, whi-
ch gives an essential contribution to the experimentally
measured permittivity. That is why the calculated permi-
ttivity €92 in the ferroelectric phase does not agree with
the experimental data.

The piezoelectric coefficients es; and do; increase wi-
th temperature and diverge at T, (Fig. 10), whereas
the constants ho; and go; have rounded maxima and
approach zero at T..

In Figs. 11, 12 the temperature curves of the pi-
ezoelectric stress coefficient es; and constant hoy of the
CDP crystal are shown at different values of uniaxi-
al pressures (p1;pe;ps), hydrostatic pressure pp, and
electric field E5. Their temperature curves at different
values of hydrostatic pressure (pn) and electric field Es
are presented in Figs. 13, 14.

Hydrostatic pressure py, increases the maximum value
of the piezoelectric stress constant hoy; the influence of
the electric field Fs at lower temperatures is weak. The
field E5 smears out the curves of the piezoelectric stress
constant hoj.

The field Ey applied to the CDP crystal decreases the
maximum values of the coefficient of piezoelectric stress
eo1 and shifts them to higher temperatures.

The elastic constants c;; of CDP are virtually
temperature independent, except for small jumps at T,
(Fig. 15).

In Fig. 16, we depict the temperature dependences of
the elastic constant c¢;; of CDP at different values of
the uniaxial pressures (p1;pe;ps), hydrostatic pressure
pn, and electric field Es. Its temperature dependences at
different values of hydrostatic presssures (py) and electric
field Ey are presented in Fig. 17.

In the presence of the pressures, the jump of the elastic
constant cy; deepens. The effect of the uniaxial pressure
ps is the strongest. Hydrostatic pressure py, lowers down
c11- The electric field F5 smears out the curves of the
elastic constant cq1; its minimum values increase with an
increase in pressures. Qutside the vicinity of the transi-
tion temperature, the field E5 does not affect the elastic
constants c;;.

The temperature curves of the pseudospin contributi-
on to the heat capacity AC), of CDP in presence of the
uniaxial pressures p; exhibit jumps at the phase transiti-
on temperature and shift to lower temperatures (Fig.18).
The magnitude of the jumps is slightly decreased by the
pressures p;.

The temperatures dependences of AC), remain quali-
tatively unchanged by hydrostatic pressure (Fig. 19).
Positions of the heat capacity maximum shift to lower
temperatures, whereas the magnitude of AC), decrease,
with an increase in hydrostatic pressure.
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Fig. 14. The temperature dependences of the constant of

piezoelectric stress hoi at different values of hydrostatic

pressure (pn) and electric field Es. The upper index denotes

the field value in MV /m, the lower index denotes the pressure
in the units of 0.1 GPa
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Fig. 15. The temperature dependences of the elastic constants
cij of CDP. Dots (e) are the experimental data of [25]
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Fig. 16. The temperature dependences of the elastic constant
c11 at different values of uniaxial pressures (p1 — 1; p2 — 2;
ps — 3), hydrostatic pressure (pn), and electric field E>. The
upper index denotes the field value in MV /m, the lower index
denotes the pressure in the units of 0.1 GPa
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Fig. 17. The temperature dependences of the elastic constant
c11 at different values of hydrostatic pressure (pn) and electric
field F>. The upper index denotes the field value in MV /m,
the lower index denotes the pressure in the units of 0.1 GPa
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Fig. 18. The temperature dependences of the proton contri-

bution to molar heat capacity at different values of uniaxial

pressures (p1 — 1; p2 — 2; ps — 3), hydrostatic pressure (pn),

and electric field F2. The upper index denotes the field value

in MV /m, the lower index denotes the pressure in the units
of 0.1 GPa

ACp, J/(mol K)
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Fig. 19. The temperature dependences of the proton

contribution to molar heat capacity at different values of

hydrostatic pressure (pn) and electric field F>. The upper

index denotes the field value in MV/m, the lower index
denotes the pressure in the units of 0.1 GPa
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In Figs. 18, 19, we plot the temperature dependences
of the pseudospin contributions to the heat capacity AC
of CDP in the presence of the electric field Ey, as well
as of the pressures and the field E5 simultaneously. The
jump of AC is smeared out by the field E5, and its maxi-
mum value is decreased. In the antiferroelectric phase,
the molar heat capacity is also reduced by the field.

V. CONCLUSIONS

In the present work, within the framework of the modi-
fied proton ordering model for the quasi-one-dimensional
CsH5POy ferroelectric with hydrogen bonds, which takes
into account the contributions to the energy of the proton
subsystem that are linear in the lattice strains e, €9,
€3, and €5, within the two-particle cluster approximati-
on, we studied the influence of hydrostatic and uniaxi-

al pressures and the longitudinal electric field E5 on
the phase transition and physical characteristics of this
ferroelectric. It has been established that the uniaxial
and hydrostatic pressure change the lattice strains ¢;, €5,
thereby changing the transition temperature and other
characteristics of the crystal.

Since the transition temperatures 7, are decreased by
the pressures, the temperature curves of the spontaneous
polarization Py, longitudinal dielectric permittivity eo9,
piezomoduli es1, da1, ha1, go1, elastic constant ¢11, and
pseudospin contribution to the heat capacity AC shift
to lower temperatues under pressures.

At pressures p < p. the external field smears out the
phase transition. At p > p. the field lowers down the
transition temperature T and discontinuously increases
the permittivity €29, elastic constant c;;, and pseudospin
contribution to the heat capacity AC in the anti-
ferroelectric phase at E; = 0.1 MV/m.
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A.S. VDOVYCH, R. R. LEVITSKII, I. R. ZACHEK, A. P. MOINA

BIIJINB OZTHOBICHUX TA TIAPOCTATNYHOTI'O TUCKIB I ITO3J0B2XHBOTO
EJIEKTPUYHOTO IIOJISd HA ®A30BI IIEPEXOU TA TEPMOAMHAMIYHI XAPAKTEPUCTUKUA
KBA3IOJHOBUMIPHOT'O CETHETOEJIEKTPUKA CsH,PO,

A. C. Buosuu', P. P. Jlepunpkuii’, I. P. Bauex?, A. II. Moiua'
! Inemumym gisuxu xvondencosarnuz cucmem HAH Yrpainu,
eya. Ceenyiyvrozo, 1, /Iveis, 79011, Yxpaina,

2 Hauyionarvnuti ynisepcumem “/Iveiscoka nosimeswixa’,
eya. C. Bandepu 12, 79013, JIveis, Yxpaina

KBazionnoBumipuuii kpucran i3 pogHesumu 3B’s3kamu CsHoPO,4 € cerneroesieKTpukoM TuIly Jiajl-
6e3man. @asoBmit mepexia i3 BucokoTemmeparypHOi mapadas3u B HU3BKOTEMIEPATYPHY cerserodasy
OB’ sI3aHUN 3 YIOPSAKYBAHHSM NMPOTOHIB HA BOJHEBUX 3B sI3KaX.

SanponoHoBaHO MOUGIKOBAHY JBOMIATIPATKOBY ICEBAOCIIHOBY Mojeib ceraeroesiekrpuka CsHoP Oy,
y SKifl MOJIOKEHHSM IIPOTOHIB IPUMHUCAHO €(PEKTUBHI JUIIOIbHI MOMEHTH Ta IICEBJIOCIIHM, a8 KPHCTAJ
PO3TIIIAETHCA IK CHCTEMa B3AEMOJiHWX mceBaocminiB. Ila mMomens ypaxoBye Jjiwiiiai 3a medopmarris-
MU TPATKH €1, €2, €3 1 €5 BHECKHA B €HEPril0 MPOTOHHOI MiICHCTEMHU, & TAKOXK 3aJIEKHICTH eDEKTUBHUX
JIUIIOTBHAX MOMEHTIB TICEBOCIIHIB Bi/ TapaMeTpiB yHOPSAKYBAHHS, IO J03BOJISE Y3rOauTH e(peKTUBHI
JIUTOIbHI MOMEHTH B CerHeTo- i mapadasi.

V Merkax 1iel Moesti B HabIMKEHH] JBOYACTUHKOBOTO KJIACTEPA 38 KOPOTKOCSKHUMU i CEPETHBOTO TTO-
JISE 32 JIAJIEKOCS>KHUME B3a€MO/IiIMU JIOCJTI?KEHO TTOBEIIHKY CIIOHTAHHOI MOJIAPHU3aliil, MO3/I0BXKHBOI Jiese-
KTPUIHOI TPOHUKHOCTI, II’€30€/TEKTPUIHIX, IPYKHAX XaPAKTEPUCTHUK 1 MOJIAPHOI TertoeMHOCTi. Bupuerno
BIJIUB TiAPOCTATUYHOTO TA OJHOBICHUX TUCKIB, & TAKOXK MO3I0BKHBOTO €JIEKTPUIHOTO MOJIsA HA (ha30BUii
nepexina Ta diznuni XapakTepucTuKu Kpucrajga. OTpuMaHOo 3aM0BiAbHUN KiILKICHUI OMKMC BiAMOBIIHIX
€KCIIePUMEHTATbHAX JAHUX.

ITokazamo, 1110 i Ji€10 OMHOBICHUX THCKIB, & TAKOXK TiIPOCTATHIHOIO TUCKY, MEHIIIOTO 38 KPUTAIHHI
P < D¢, TOHUKYETHCSA TEMIIEPATYpa (ha30BOro nepexoay napa-ceraerodasa. Ilpu mpomy TemneparypHi 3a-
JIE?KHOCTI PI3HUX TEPpMOIMHAMIYHUX XaPAKTEPUCTUK STKICHO MO/i0OHI, sIK 3a BiJICYTHOCTI THUCKIiB. 3OBHIITHE
eJIEKTPUYHE TI0JIe 33 TUCKIB P < P, po3muBae (azoBuii mepexi.

3a rigpocTaTudHOrO TUCKY p > P. BUHUKAE nepexin B anrucernerodasy. Enexkrpudane mose 3a p >
Pe TIOHMIKYE TeMmmeparypy (ha3oBOro mepexomy mapa-anTucerunerodas’a i 301IbITye MPOHUKHICTH E9o B
anTucerunerodasi. Jlocrarapo cuiibHe mosie MOXKe 3MiHuTH pif dha30Boro mepexomay B Touri 1y i3 Apyroro
Ha IIEePIIUi.

Haiicunpuimuit Brisius nosist Ha pO3pax0OBaHi XapaKTEPUCTUKU € 1100J/In3y KPUTUIHOI'O Ii/IPOCTATUYHOIO
TUCKY P.; i3 moumxkenaam Temmeparypu kpucrana CsHoP Oy nepexonuts crepiry 3 mapadasu B aHTHCEr He-
Todasy, a 3a MOJATBIIOr0 MOHMKEHHS TeMIepaTypu — 3 aHTuceraerodasu B ceraerodasy. [lo3mosxkme
nosie Fo 30ibinye Kpuruanuii rigpocraruanuit Tuck p. y kpucraiai CsHoPOy.

KirrouoBi cJyioBa: CerHeTOeIeKTPUKHU, MIEJeKTPUYHA MPOHUKHICTH, 11 €30€JIEKTPUYHI KOoedilieHTn,
BIJIUB TUCKY, BIJIUB €JIEKTPUIHOTO TTOJIS.
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