РОЗРАХУНОК КОЛИВНИХ СПЕКТРІВ КРИСТАЛІВ $AgGaS_2$ ЗІ СТРУКТУРОЮ ХАЛЬКОПІРИТУ

М. Я. Рудиш^{1,2,3,4}, А. І. Кашуба⁴, П. А. Щепанський^{1,2,4}

Р. Ю. Петрусь⁴, В. Й. Стадник¹, М. Пясецький²

¹Львівський національний університет імені Івана Франка, вул. Драгоманова, 19, Львів, 79005, Україна

² Гуманітарно-природничий університет імені Яна Длуґоша в Ченстохові,

ал. Армії Крайової, 13/15, Ченстохова, 42-200, Польща

³Волинський національний університет імені Лесі Українки, вул. Потапова, 9, Луцьк, 43025, Україна

⁴ Національний університет "Львівська політехніка", вул. Степана Бандери, 12, Львів, 79013, Україна

 $e\text{-}mail:\ rudysh.myron@gmail.com$

(Отримано 10 березня 2021 р.; в остаточному вигляді — 23 травня 2021 р.; прийнято до друку — 31 травня 2021 р.; опубліковано онлайн — 07 серпня 2021 р.)

Проведено теоретичні першопринципні обчислення структурних, коливних та діелектричних властивостей кристалів AgGaS₂ зі структурою халькопіриту. Зроблено розрахунки дисперсії фононних спектрів $\omega(q)$, повної та парціальної густини фононних станів $N(\omega)$, інфрачервоних спектрів та спектрів комбінаційного розсіювання світла, тензора ефективних зарядів Борна для кожного атома, а також діелектричних констант (для $\omega = 0$ та $\omega \to 0$) із використанням теорії збурення функціонала густини. Здійснено теоретико-груповий аналіз коливних мод та покласифіковано їх у фононних спектрах досліджуваної сполуки.

Оптимізована кристалічна структура добре узгоджується з експериментальними даними структурних досліджень. Розраховано та ідентифіковано частоти оптичних фононів і показано чудове узгодження з наявними іншими теоретичними та експериментальними результатами. Отримано тензори статичної та електронної діелектричної проникності й зарядів Борна, які демонструють значну анізотропію матеріалу.

Ключові слова: AgGaS₂, DFPT, фонон, теорія лінійного відгуку, ефективні заряди Борна, коливні спектри.

DOI: https://doi.org/10.30970/jps.25.3704

I. ВСТУП

Потрійні напівпровідникові матеріали зі структурою халькопіриту, що належать до групи I–III–VI₂ (де I = Ag, Cu; III = Al, Ga, In; VI = S, Se, Te), привертають значну увагу науковців через свої цікаві властивості. Структурні, електронні та оптичні властивості цих кристалів роблять їх перспективними матеріалами для низки застосувань у пристроях нелінійної оптики, детекторах, фотодіодах, сонячних комірках тощо. Зокрема, один із перспективних матеріалів для сонячної енерґетики CuInSe₂ та пов'язана з ним сполука Cu(InGa)(SSe)₂ (CIGS) показують ефективність перетворення сонячної енерґії 23.4% [1].

Кристали групи, що розглядається, через значення ширини забороненої зони, близьке до оптимального під час використання сонячного світла, цікаві й перспективні для тонкоплівкових сонячних батарей. Прозорість цих матеріалів у середній інфрачервоній ділянці спектра разом із відсутністю центра симетрії дозволили ефективне використання деяких кристалів (як-от: AgGaS₂, AgGaSe₂ та ін.) як комерційних нелінійнооптичних матеріалів, що доступні сьогодні на ринку. Тому дослідження цієї групи кристалів актуальне як для альтернативної енерґетики, так і для можливості їх використання в інших галузях: оптоелектроніці, метрології, акустооптиці тощо. Крім прикладного аспекту, вивчення халькопіритів дуже важливе і з погляду фундаментальної фізики.

Кристали тіогалату срібла (AgGaS₂) є відомими не-

лінійнооптичними кристалами. Вікно прозорості кристала в інфрачервоній (ІЧ) ділянці знаходиться в межах 0.45–13 мкм [2]. Нелінійнооптичний коефіцієнт цього кристала $d_{36} = 39$ пм/В, що дозволяє його використовувати для перетворення частоти лазерного випромінювання в ІЧ-ділянці спектра [3]. Кристал є оптично від'ємним ($n_o < n_e$) та має інверсію знака двопроменезаломлення за довжини хвилі $\lambda_0 = 500$ нм [4]. Заборонена зона для AgGaS₂ за кімнатної температури є прямого типу, і її ширина $E_g = 2.6$ еВ [5]. Зазначено також, що кристали AgGaS₂ можуть бути використані для Х-променевої дозиметрії [6, 7].

Відомо, що спектри комбінаційного розсіювання (КР) світла та ІЧ-спектри є ефективним засобом для вивчення структури й динаміки ґратки матеріалів. Вони дозволяють вивчати досконалість структури, наявність домішок/дефектів, дають інформацію про зміну структури матеріалу під час фазових переходів. Використання теоретичних досліджень на базі першопринципних методів дають змогу ефективно передбачати властивості матеріалу. Нещодавно здійснено теоретичні дослідження з перших принципів динаміки ґратки низки халькопіритних кристалів: CuGaS₂ [8], CuGaSe₂ [9], CuGaTe₂ [10], CuInS₂ [11], CuInSe₂ [12, 13], AgGaTe₂ [14]. Фононний спектр для кристала AgGaS₂ раніше вивчали в роботі [15].

Наявні лише кілька експериментальних робіт, присвячених дослідженню спектрів КР [16–19]. Частоти ІЧ коливних мод наведені в праці [21]. Теоретичному вивченню коливних спектрів присвячена робота [20], у якій за допомогою програм Phonon та CASTEP розраховано дисперсії фононних спектрів та частот коливних мод, однак обчислення ІЧ та КР-спектрів не проводили. Наявні експериментальні результати дослідження властивостей динаміки ґратки кристала AgGaS₂ потребують детальнішого теоретичного вивчення для повного розуміння фононної підсистеми в матеріалі. Тому теоретичні дослідження динаміки ґратки та коливних спектрів із перших принципів є актуальними.

У цій праці, використовуючи першопринципні розрахунки, ми вивчаємо властивості електронної і ґраткової підсистем халькопіритного кристала AgGaS₂. Уперше розраховано КР та ІЧ-спектри, а також проведено їх ідентифікацію та порівняння з експериментальними даними. Здійснено комп'ютерне моделювання фононних спектрів із метою їх порівняння з наявними в літературі результатами та використання цих результатів для розрахунку КР та ІЧ-спектрів. Проведено симетрійну класифікацію коливних мод. Методом лінійного відгуку розраховано фононні частоти, спектри ІЧ- коливань та спектри КР, ефективні заряди Борна, а також статичну й оптичну діелектричні константи.

Стаття складається з чотирьох розділів. У другому розділі описано методику зроблених обрахунків та наведено основні використані параметри. Третій розділ висвітлює головні результати, їх обговорення та порівняння з наявними літературними даними. Четвертим розділом є найважливіші висновки роботи.

II. МЕТОДИКА РОЗРАХУНКУ

У цій праці розраховано коливні спектри кристалів AgGaS₂ із використанням програми CASTEP (CAmbridge Serial Total Energy Package) [22], яка розроблена на основі теорії функціонала густини (DFT) [23, 24]. У програмі реалізовано псевдопотенціальний метод із розкладом хвильової функції на плоскі хвилі. Взаємодію між йонами та валентними електронами описано за допомогою нормозберігального псевдопотенціалу [25]. Обмінно-кореляційну взаємодію між електронами враховували за допомогою наближення локальної густини (local density approximation — LDA) з параметризацією Сеперлі-Алдера-Пердю-Зунгера [26, 27]. Валентними станами в цій роботі вважали орбіталі Ag $4d^{10} 5s^1$; Ga $3d^{10} 4s^2 4p^1$, S 3s² 3p⁴. Обчислювали енергію системи самоузгодженим розв'язуванням рівнянь Кона-Шема. Критерієм збіжності циклу самоузгодження було досягнення різниці власних значень енергії $E \le 2 \cdot 10^{-7}$ eB та збіжність повної енергії 10^{-5} на двох послідовних ітераціях. Розрахунки проводили з енергією відсікання плоских хвиль рівною $E_{\rm cut} = 800$ eB. Інтеґрували в першій зоні Бріллюена по k-точках сітки $3 \times 3 \times 2$, вибраної за схемою Монхорста-Пека [28].

Обчислювали динамічні властивості матеріалу з використанням підходу лінійного відгуку теорії збурень для функціонала густини (density functional perturbation theory — DFPT) [29]. Частоти фононів, інфрачервоні та КР-спектри, зміщення атомів, фононні спектри та густина фононних станів отримали, використовуючи метод лінійного відгуку.

Перед усіма розрахунками проводили геометричну оптимізацію елементарної комірки кристала. Для цього застосовували алґоритм Бройдена–Флетчера–Голдфарба–Шенно (BFGS) [30–33], який дозволяє оптимізувати геометрію комірки кристала щодо його повної енергії. У процесі оптимізації використовували такі критерії збіжності: максимальна сила $3 \cdot 10^{-2}$ eB/Å; максимальний тиск $5 \cdot 10^{-3}$ ГПа; максимальне зміщення атомів $1 \cdot 10^{-4}$ Å.

III. РЕЗУЛЬТАТИ Й ОБГОВОРЕННЯ

А. Структура кристала AgGaS₂

Елементарна комірка кристала AgGaS₂ є тетрагональною базоцентрованою та належить до просторової групи симетрії $I-42d~(D^{12}_{2d})$. Гратка складається з 16 атомів і містить число формульних одиниць Z = 4. Комірка кристала халькопіриту утворена з двох комірок типу цинкової обманки з просторовою групою симетрії T_d^2 (таких кристалів, як CdS, ZnS тощо) заміною катіонної підгратки, що складається з атомів групи II, атомами двох типів І та III. На рис. 1 зображено перехід від комірки кристала ZnS до AgGaS₂. Із розгляду кристалічної структури можна помітити, що відстані між атомами Ag-S та Ga-S (у загальному випадку атоми типу I-VI та III-VI), які можна позначити як d_{Ag-S} та d_{Ga-S}, не однакові. Така відмінність довжин зв'язків є результатом катіонної заміни в кристалічній ґратці атомами двох типів (Zn → Ag + Ga). У кристалах зі структурою типу халькопіриту, до якого належить досліджуваний кристал, є два типи деформації кристалічної ґратки. Перший тип полягає в зміщенні аніона групи VI у площині x-y, яке описується параметром $u=0.25+(d_{
m Ag-S}^2-d_{
m Ga-S}^2)/a^2$, де $d_{
m Ag-S}$ та $d_{
m Ga-S}$ — відстань катіон-аніон для кристала Ag–S та Ga–S відповідно, *a* — параметр ґратки. До другого типу деформації комірки відносять її спотворення вздовж напрямку z, яке полягає в стисненні чи розтягненні елементарної комірки (залежно від складу сполуки). Тоді параметр кристалічної ґратки відрізняється від подвійного значення параметра $a \ (c \neq 2a)$. Таке тетрагональне викривлення описується величиною $\eta = c/2a$. Відомо, що величина цього параметра часто є критичною під час відбору матеріалів для різних застосувань. Зокрема, у роботі [34] показано, що кристалічні матеріли з параметром η , близьким до одиниці, мають найбільше значення термоелектричної добротності *ZT*.

У цій праці для моделювання використано експериментальні параметри кристалічної структури, отримані з рентґеноструктурних досліджень, що опубліковані в [35]. Для кристала AgGaS₂ значення параметрів спотворення елементарної комірки η та u наведено в таблиці 1, а отримані координати атомів у ґратці наведено в таблиці 2.

Рис. 1. Структура кристалічної ґратки кристала ZnS зі структурою цинкової обманки (типу сфалерит) та ${\rm AgGaS}_2$ (типу халькопіриту)

Fig. 1. The structure of the crystal lattice of the ZnS crystal with a zinc-blende structure (sphalerite type) and $AgGaS_2$ (chalcopyrite type)

Метод	$a, \mathrm{\AA}$	$c, \mathrm{\AA}$	$V, \mathrm{\AA}^3$	η	u
LDA	5.567	10.461	324.252	0.9395	0.2645
Експеримент [35]	5.754	10.295	340.85	0.8945	0.3039

Табл. 1. Структурні параметри кристалічної ґратки кристала AgGaS₂

Table 1. Structural parameters of the ${\rm AgGaS_2}$ crystal unit cell

Експе	ерим	ент [35]	LDA			
x/a	y/b	z/c	x/a	y/b	z/c	
0	0	0	0	0	0	
0	0	1/2	0	0	1/2	
0.304	1/4	0.125	0.221	1/4	0.125	

Табл. 2. Експериментальні (взяті з літератури) та теоретичні координати атомів у гратці кристала AgGaS₂ отримані з використанням LDA функціоналу

Table 2. Experimental (taken from the literature) and theoretical atomic coordinates in the $AgGaS_2$ crystal's unit cell obtained using the LDA functional

Із метою геометричної оптимізації проведено релаксацію кристалічної ґратки кристала. Упродовж цього процесу змінювались як параметри комірки, так і координати атомів. При цьому симетрія комірки залишалась незмінною. Оптимізовані з використанням LDА-функціонала структурні параметри досліджуваної сполуки наведені в табл. 1 і 2, з яких видно, що оптимізовані параметри ґратки, як і очікувалось, є меншими, ніж експериментальні. Це зумовлено відомою особливістю LDA функціонала, яка полягає в надзв'язуванні (заниженні довжини зв'язків) і спостерігається в матеріалах різної природи [36–39]. Отримана недооцінка параметрів ґратки порівняно з експериментом становить $\delta a = 3.2\%$ та $\delta c = 3.5\%$, що свідчить про добре узгодження між цими даними. Подібне значення недооцінки параметрів ґратки для LDA функціонала спостерігалось раніше в роботах [40, 41]. Як видно з табл. 1, параметр тетрагональної деформації є меншим за 1 як для експериментальної структури, так і для геометрично оптимізованої. Зазначимо, що оптимізована структура показує ближче значення параметра η до одиничного, ніж експериментальне. Така поведінка може бути пов'язаною з неврахуванням температурних флуктуацій атомів, оскільки розрахунки проводяться з використанням DFT у наближенні Борна–Опенгаймера (ядра атомів вважаються нерухомими).

Б. Коливні властивості

Розглядаючи кристалічну структуру під час симетрійної класифікації фундаментальних коливань, потрібно брати до уваги примітивну комірку. Зміщення атомів у кожній примітивній комірці ідентичні, тому операціями трансляції можна знехтувати. Відповідно, фундаментальні коливання кристала варто класифікувати за незвідними представленнями фактор- групи [42]. Як повідомляється в розділі III.А, кристал халькопіриту належить до просторової групи симетрії $I - 42d \ (D_{2d}^{12})$, яка ізоморфна до точкової групи симетрії (D_{2d}) із порядком h = 8. Примітивна комірка кристала AgGaS₂ має одиничні вектори примітивної комірки (a, 0, 0), (0, a, 0), (a/2, a/2, c/2) та містить 8 атомів. Як відомо з фізики твердого тіла, для кристалічної ґратки, яка складається з N атомів, що коливаються, кількість коливних мод становить 3N. Для досліджуваного кристала N = 8, і коливне представлення містить $3 \times 8 = 24$ дисперсійні вітки. Тому в коливному спектрі кристала є 24 нормальні моди коливань у центрі зони Бріллюена (точка Г). Серед них лише три акустичні моди, а решта оптичні. На основі теоретико-групового аналізу, використовуючи фактор-групу кристала, можна провести симетрійну класифікацію коливних мод. Таблицю характерів точкової групи симетрії D_{2d} подано в таблиці 3, де A_1 $(\Gamma_1), A_2 (\Gamma_2), B_1 (\Gamma_3)$ та $B_2 (\Gamma_4)$ — не вироджені представлення, а $E(\Gamma_5)$ є двічі виродженим представленням.

Аналіз на основі загального методу дає такі незвідні представлення акустичних й оптичних мод у центрі зони Бріллюена:

$$\Gamma_{\rm vib} = 1A_1 + 2A_2 + 3B_1 + 4B_2 + 7E.$$
(1)

Тут A_1 — повносиметричне представлення (симетрія щодо всіх представлень); A_2 — симетричне щодо $2S_4$ і C_2 та антисиметричне щодо $2C'_2$ та $2\sigma_d$; B_1 — антисиметричне щодо $2S_4$ і $2\sigma_d$ та симетричне щодо C_2 і $2C'_2$; B_2 — симетричне щодо C_2 і $2\sigma_d$ і антисиметричне щодо $2S_4$ і $2C'_2$; E — антисиметричне щодо C_2 . Трьом акустичним модам відповідає таке незвідне представлення:

$$\Gamma_{\rm aco} = 1B_2 + 1E. \tag{2}$$

Для оптичних коливань маємо, що $\Gamma_{\rm opt} = \Gamma_{\rm vibr} - \Gamma_{\rm aco}$. Тоді, в результаті отримаємо таке незвідне представлення для оптичних мод:

$$\Gamma_{\rm opt} = 1A_1 + 2A_2 + 3B_1 + 3B_2 + 6E.$$
 (3)

Моди A_1 та B_1 активні у спектрах КР. B_2 і E-моди є активними як у КР, так і в ІЧ-спектрах. Мода A_2 є неактивною в коливних спектрах. Згідно з цим для ІЧ та КР- спектрів матимемо такі незвідні представлення:

$$\Gamma_{\rm IY} = 4B_2 + 7E,\tag{4}$$

$$\Gamma_{\rm KP} = 1A_1 + 3B_1 + 4B_2 + 7E. \tag{5}$$

Загалом інтенсивність піків у спектрі КР можна описати такою формулою:

$$I_{\rm KP} = I_0 \frac{\omega^4}{4\pi c^3} \alpha_{ij}^2, \tag{6}$$

де α_{ij} — тензор поляризовності, а i, j = x, y та z. Тензори КР для кристала з ґраткою типу халькопіриту подано в таблиці 4.Тоді в спектрі КР для кристала зі симетрією D_{2d} інтенсивними повинні бути повносиметричні поляризовані коливання типу A_1 . Решта мод, дозволених у спектрах КР, порівняно з модою A_1 будуть слабшої інтенсивності. У спектрах КР найбільш інтенсивними є смуги, що відповідають повносиметричним поляризованим коливанням типу A_1 . Інші дозволені в спектрах КР моди мають нижчу інтенсивність, ніж мода A_1 .

Ми розрахували коливний спектр для кристала AgGaS₂ у межах формалізму DFPT за допомогою методу лінійного відгуку. Опис обмінно-кореляційної взаємодії електронів під час обчислення повної енергії системи здійснювався LDA функціоналом [26, 27]. Він показав себе таким, що добре описує як органічні, так і неорганічні системи, які містять у своїй структурі різні хімічні елементи. Також до переваг можна віднести його простоту, що проявляється в суттєво меншому часі обчислень порівняно з іншими функціоналами. Раніше проводили обрахунки як зонно-енергетичної структури, так і інших фізичних властивостей неорганічних матеріалів із використанням LDA функціонала [40, 41, 43], які показали добре узгодження з експериментальними даними. У роботі [14] досліджено фізичні властивості та проведено моделювання коливних спектрів кристала AgGaTe₂.

$D_{2d}(-42m)$	E	$2S_4$	C_2	$2C_{2}^{'}$	$2\sigma_d$	Лінійна	Квадратична
A_1	1	1	1	1	1		$x^2 + y^2, z^2$
A_2	1	1	1	-1	-1	R_z	_
B_1	1	-1	1	1	-1		$x^2 - y^2$
B_2	1	-1	1	-1	1	z	xy
E	2	0	-2	0	0	$(x,y),\ (R_x,\ R_y)$	(xz,yz)

Табл. 3. Таблиця характерів точкової групи симетрії D_{2d} Table 3. The character table of the D_{2d} point group symmetry

A_1	B_1	B_2	E_x	E_y	
$ \begin{bmatrix} a & 0 & 0 \\ 0 & a & 0 \\ 0 & 0 & b \end{bmatrix} $	$ \left(\begin{array}{ccc} c & 0 & 0 \\ 0 & -c & 0 \\ 0 & 0 & 0 \end{array}\right) $	$ \left(\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{pmatrix} 0 & 0 & e \\ 0 & 0 & 0 \\ e & 0 & 0 \end{pmatrix}$	$\begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & e \\ 0 & e & 0 \end{pmatrix}$	

Табл. 4. Тензори KP і їх представлення для точкової групи симетрії D_{2d} Table 4. Raman tensors and their representation for D_{2d} point group symmetry

Коливні моди у твердих тілах мають форму хвиль із частотами, що залежать від хвильового вектора (як електронні енерґетичні рівні). Залежності $\omega(q)$ відомі як дисперсійні криві. На рис. 2,а зображено фононні спектри $\omega(q)$, розраховані вздовж ліній, що з'єднують точки високої симетрії зони Бріллюена: Z–Г–Х–Р–N– Г. Як можна побачити, фононний спектр складається з 24 віток, що узгоджується з кількістю мод, отриманих із симетрійного аналізу. Із них 3 є акустичними вітками, що відповідають поширенню звуку як $\omega \to 0$ за $q \to 0$. Решта 21 розрахована коливна вітка є оптичними модами. Спостерігається несуттєва дисперсія фононів, яка зростає з наближенням до центру зони Бріллюена. У точці Г вона найбільша. Низькочастотні оптичні гілки взаємодіють з акустичними. Найвища частота фонона становить 389 см⁻¹ на сеґменті між точками Z–Г. Як видно з розрахованої густини фононних станів $N(\omega)$ (рис. 2,6), для кристала AgGaS₂ спостерігається два частотні діапазони, у яких не відбуваються коливання. Для точки Г ці проміжки є від 189.4 см⁻¹ до 219.5 см⁻¹ та від 255.9 см⁻¹ до 300.27 см⁻¹. Частоти нормальних коливань подано в таблиці 5.

На рис. З зображено густину фононних станів $N(\omega)$, спроєктовану на окремі атоми (парціальну густину фононних станів). Як видно з рис. З, густину станів можна розділити на три ділянки — низькочастотну, середньочастотну та високочастотну. Низькочастотна ділянка спектра, що лежить у межах 0–75 см⁻¹, утворена коливаннями атомів срібла. Спектральна ділянка від 75 до 190 см⁻¹, що є середньою ділянкою фононного спектра, утворена модами коливання атомів галію. Високочастотна ділянка коливань відповідає головно коливанням атомів сірки. Ці результати до-

бре узгоджуються з теоретичними розрахунками, виконаними в праці [20], що підтверджує достовірність отриманих у нашій роботі результатів.

Рис. 2. Фононні дисперсійні криві $\omega(q)$ (а) та фононна густина станів $N(\omega)$ (б) кристала тіогалату срібла AgGaS₂ розраховані методом лінійного відгуку з використанням LDA функціонала. Шлях розрахунку визначається у напрямку, що зєднує наступні точки високої симетрії зони Бріллюена: Z (1/2 1/2 -1/2), Г (0 0 0), X (0 0 1/2), Р(1/4 1/4 1/4), N(0 0.5 0)

Fig. 2. The phonon dispersion curves $\omega(q)$ (a) and the phonon density of the states $N(\omega)$ (b) of a silver thiogalate crystal AgGaS₂ are calculated using the linear response method using the LDA functional. The calculation path is determined in the direction connecting the following points of high symmetry of the Brillouin zone: Z (1/2 1/2 -1/2), $\Gamma(000)$, X (0 0 1/2), P(1/4 1/4 1/4), N (0 1/2 0)

Мода	Активність	LDA	КР [17] експ.	КР[19] експ.	КР [20] теор.	IЧ [21] експ.
A_1	KP	300.27	295	297.61	297.20	_
A_2	_	255.98	_	_	251.51	_
A_2	_	356.97	_	_	357.91	_
E	КР, ІЧ	33.66/33.65	84.45	64.8	32.02/31.35	65.06
E	КР, ІЧ	100.88/100.84	94.5	91.93	102.07/102.07	96.06
E	КР, ІЧ	161.18/160.90	159.5/160	159.07	166.11/164.11	170.12/157.11
E	КР, ІЧ	238.91/236.99	224/229.5	225.93	244.83/234.83	227.16/221.15
E	КР, ІЧ	334.83/324.25	321.5/346	336.07	357.91/325.89	349.24/321.22
E	КР, ІЧ	376.27/366.43	_	394	380.59/368.92	395.27/367.25
B_1	KP	62.46	54		65.04	_
B_1	KP	189.44	190.5	126,7	192.80	_
B_1	KP	337.81	333.5	177.9	339.56	_
B_2	КР, ІЧ	67.79/67.77	64	_	74.72/74.38	_
B_2	КР, ІЧ	225.71/219.41	212/237.5	225.93/208.09	265.85/223.48	244.17/214.15
B_2	КР, ІЧ	376.22/365.24	364/398.5	391.48/362.51	386.26/365.92	383.26/365.25

Табл. 5. Порівняння розрахованих фононних частот (в см⁻¹) у точці Г з експериментальними спектрами КР та ІЧ коливання для кристала AgGaS₂ за кімнатної температури. Дві частоти подано для досліджень спектрів КР та ІЧ спектрів, що відповідають LO і TO модам

Table 5. Comparison of the calculated phonon frequencies (in cm^{-1}) at Γ -point with the experimental Raman and infrared vibrations for an AgGaS₂ crystal at room temperature. Two frequencies are shown for the study of the Raman and infrared spectra corresponding to the LO and TO modes

Рис. 3. Парціальна фононна густина станів кристалів AgGaS₂ розрахована для атомів Ag, Ga та S методом лінійного відгуку з використанням LDA функціоналу

Fig. 3. The partial phonon density of states of AgGaS₂ crystals calculated for Ag, Ga, and S atoms using the linear response method using the LDA functional

Рис. 4. Коливання у кристалі AgGaS₂ a) симетрії A₁; б) симетрії A₂; в) симетрія E; г) симетрії B₁; д) симетрії B₂. Атоми Ag синього кольору, атоми Ga зображені коричневим кольором та атоми S є жовтими кульками Fig. 4. Vibrations in the AgGaS₂ crystal a) symmetry A₁; б) symmetry A₂; в) symmetry E; г) symmetry B₁; д) symmetry

4. Vibrations in the AgGaS₂ crystal a) symmetry A_1 ; b) symmetry A_2 ; b) symmetry E; r) symmetry B_1 ; d) symmetry B_2 . Ag atoms are blue, Ga atoms are shown in brown and S atoms are yellow balls

На рис. 4 показано основні зміщення атомів для оптичних мод кристала AgGaS₂. Атоми Ag Ga, та S позначені кульками синього, коричневого та жовтого кольорів відповідно. Їхнє зміщення показано зеленими стрілками. Довжина кожної стрілки пропорційна до величини зміщення атома щодо положення рівноваги. У лівому нижньому куті вказано напрямки системи координат x, y i z, які відповідають кристалографічним осям a, b та c. Кожен блок атомів, що складає примітивну комірку, разом зі стрілками, що вказують напрямок зміщення атомів, характеризує коливання однієї моди. На рисунку показано типи зміщення атомів для п'яти коливних мод A_1, A_2, B_1, B_2 та E досліджуваного кристала. У дужках зазначено частоту відповідного коливання.

Рис. 5. Розрахований (крива 1) з використанням LDA функціоналу та та експериментальний (крива 2) [19] спектри КР кристала AgGaS₂

Fig. 5. The calculated (curve 1) using the LDA functional and the experimental (curve 2) [19] Raman spectra of the $AgGaS_2$ crystal

Рис. 6. Розраховані IЧ спектри кристала AgGaS₂ отримані з використанням LDA функціоналу

Використовуючи програму CASTEP, обчислили спектри КР. Інтенсивність піків КР розраховували вбудованим функціоналом програми, основні деталі розрахунків яких наведені в роботі [45]. Ширину спектральних ліній задано такими параметрами, як розмиття, температура та довжина світлової хвилі фундаментального пучка. Теоретичні розрахунки спектра KP для кристала $AgGaS_2$ наведено на рис. 5. Обчислення проводили для довжини хвилі світла фундаментального пучка, що падає на досліджуваний кристал $\lambda = 514.5$ нм та для температури зразка T = 293 К. Наведений спектр розраховували в ділянці частот $\omega~=~0{-}400~{\rm cm}^{-1}.$ У спектрі наявна серія піків, що відповідає коливанням структурних елементів кристала AgGaS₂ (рис. 5 крива 1). Найінтенсивнішою, як було оцінено з формули 6 та симетрії тензора КР для точкової групи симетрії D_{2d} , є повносиметрична мода A₁, що відповідає обчисленій частоті коливань 300.27 см⁻¹. Усі інші активні в спектрах КР смуги коливання мають значно нижчу інтенсивність піків. Для порівняння розрахованих спектрів КР з експериментом на рис. 5 наведено експериментальні спектри, подані в літературі [19] (крива 2). Порівнюючи експериментальну та теоретичну криві спектрів КР, бачимо їх добре узгодження. Зазначимо, що найінтенсивніший пік А₁ є дещо зсунутий у бік вищих частот на величину $\Delta \omega \approx 2.7 \text{ см}^{-1}$. Такий зсув спостерігали раніше для кристала β -LiNH₄SO₄ [43] та для кристала AgGaTe₂ [14]. Для кристала AgGaTe₂ найінтенсивніший пік спостерігався за $\omega = 135$ см⁻¹ і також відповідав моді А₁. Для цього кристала зсув піка А₁ щодо експериментального спектра становив $\Delta \omega \approx 5 \text{ см}^{-1}$ у бік вищих частот.

Розрахунок IЧ- спектрів для кристала AgGaS₂ проведено, як і у випадку КР спектрів, за допомогою вбудованого функуціонала програми CASTEP [45]. На рисунку 6 наведено теоретичні інфрачервоні спектри кристала AgGaS₂, обчислені в ділянці частот $\omega = 0-400~{\rm cm}^{-1}$. Для IЧ спектрів досліджуваної сполуки найвища частота коливної моди становить 365.24 см⁻¹. Спектр складається з п'яти основних піків. Два піки за частот 324.6 см⁻¹ і 365.6 см⁻¹ мають високу інтенсивність, два піки при 219.6 см⁻¹ та 236.6 см^{-1} мають інтенсивність близько 1/4 від інтенсивності найвищого піка, і один пік за 160.9 см⁻¹ є з низькою інтенсивністю. Найінтенсивніший пік у цьому спектрі знаходиться за $\omega = 324.25 \text{ см}^{-1}$, тоді як пік дещо нижчої інтенсивності — за 365.24 см⁻¹. Ці два піки відповідають E та B_2 типам симетрії, аналогічно до даних, отриманих у роботі [14] для кристала AgGaTe₂.

В. Тензор ефективних зарядів Борна та діелектричні константи для AgGaS₂

Важливу інформацію про тверде тіло можна отримати із зарядів Борна. Тензор ефективних зарядів Борна показує макроскопічний електричний відгук кристала на внутрішнє переміщення атомів у кристалі. Однорідний зсув підґратки катіона або аніона породжує макроскопічну поляризацію, але не створює макроскопічного електричного поля, оскільки періодичність підґраток не змінюється. Ці заряди дають змогу оцінити ступінь йонності матеріалу, а також можуть бути цікавими під час аналізу LO–TO розчеплення і визначаються як індукована поляризація твердого тіла вздовж напрямку $\alpha(P_{\alpha})$ для одиничного зміщення атома вздовж напрямку $\beta(\tau_{k,\beta})$, що належить підґратці k. Згідно з теорією [44, 46], ефективні заряди Борна для центра зони Бріллюена обчислюються як

$$Z_{k,\alpha\beta}^* = \Omega \frac{\delta P_\alpha}{\delta \tau_{k,\beta}^{q=0}} \bigg|_{E=0},\tag{7}$$

де Ω — об'єм елементарної комірки, δP_{α} — поляризація і $\delta \tau_{k,\beta}$ — зміщення k-го атома в напрямку β . Малі значення Z^* вказують на нескорельоване атомне зміщення, що свідчить про фазову стабільність. Для обчислення ефективних зарядів Борна ми розглянули незалежні зміщення для всіх складників атомів Ag, Ga i S. Отримано електронний внесок до зміни поля-

ризації вздовж кожного напрямку. Розрахунок динамічних й ефективних зарядів досліджуваного кристала проведено в межах стандартної процедури обчислення його коливного спектра з використанням програми CASTEP і за допомогою DFPT, реалізованого в ній методом лінійного відгуку. Розраховані тензори ефективного заряду Борна (Z^*) , що описують однорідні зсуви підграток Ag, Ga та S у кристалі AgGaS₂, власні значення симетричної частини $Z^*(\lambda)$, а також динамічні заряди Q_d , що є середнім значенням діагональних елементів цього тензора, показано в таблиці 6. Тензори ефективних зарядів наведені для одного атома Ag з позицією 4a (S_4), одного атома Ga з позицією $4d(S_4)$ (оскільки інші еквівалентні) та двох атомів S з позицією 8d. Як видно з таблиці, тензори є діагональними та майже ізотропними. Для тетрагональних кристалів, згідно з їхньою симетрією, $Z^*_{xx}=Z^*_{yy}\neq Z^*_{zz}.$ Значення $Z^*_{xx}/Z^*_{zz}=1.17$ для атомів срібла; $Z^*_{xx}/Z^*_{zz}=0.94-$ для атомів галію. Тензор є майже сферичним із невеликим тетрагональним викривленням, як і кристалічна структура, через невиконання співвідношення c/2a = 1.

Атом	Z	$Z^*(\lambda)$	Q_d		
	(1.10	0.10	0.00	(1.10)	
Ag	$Z_{\rm Ag}^* = -0.10$	1.10	0.00	1.10	1.05
	0.00	0.00	0.94/	(0.94)	
	(2.66	0.23	0.00	(2.66)	
Ga	$Z_{\rm Ga}^* = -0.23$	2.66	0.00	2.55	2.71
	(0.00	0.00	2.82/	(2.82)	
	(-1.64)	0.00	(0.00)	(-1.22)	
S1	$Z_{\rm S1}^* = 0.00$	-2.12	-0.73	-2.78	-1.88
	0.00	-0.82	-1.88/	(-1.64)	
	(-2.12)	0.00	0.73	(-1.22)	
S2	$Z_{\rm S2}^* = 0.00$	-1.64	0.00	-2.78	-1.88
	0.82	0.00	-1.88/	(-1.64)	

Табл. 6. Розраховані ефективні заряди Борна Z^* , власні значення симетричної частини $Z^*(\lambda)$ і динамічні заряди Q_d (в одиницях заряду e) кристала AgGaS₂

Table 6. Calculated effective Born charges Z^* , eigenvalues of symmetrical part $Z^*(\lambda)$, and dynamical charges Q_d (in units of charge e) of AgGaS₂ crystal

Атоми сірки розташовані в позиції 8d із нижчою симетрією (C_2) порівняно з атомами Ag та Ga. Тому симетрія тензора Z^* для неї є нижчою. Аніони мають такі компоненти тензора: $Z_{\text{S},zz}^* = -1.88$, тоді як $Z_{\text{S},xx}^*$, а також $Z_{\text{S},yy}^* = -1.64$ або -2.12, залежно від того, який параметр викривлення u. Про аналогічний вигляд тензора Z^* повідомляється для кристала ZnSnP_2 [47]. Також через викривлення u уздовж x чи y напрямку наступні недіагональні компоненти стають не нульовими: $Z_{\text{S},yz}^* = \pm 0.73$, $Z_{\text{S},zy}^* = \pm 0.73$, $Z_{\text{S},zy}^* = \pm 0.73$, $Z_{\text{S},zy}^* = \pm 0.82$. Нормальні заряди складників атомів кристалів

Нормальні заряди складників атомів кристалів AgGaS₂ такі: Ag +1; Ga +3; S -2 (у зарядах e). Як видно з таблиці, спостерігається відхилення динамічних зарядів щодо номінальних значень вільних йонів 1.047, 2.713, -1.88 для атомів Ag, Ga та S відповідно. Відхилення від нормальних зарядів говорить про динамічне перенесення заряду між йонами. Додатково таке відхилення зарядів указує на сильний ковалентний зв'язок між атомами в цій сполуці. Літературні дані про ефективні заряди для досліджуваного кристала нам не відомі.

Із другої похідної від повної енергії системи по електричному полі можна отримати діелектричну проникність системи ε [48]. Якщо розглядати внесок в енергію системи лише від електронної підсистеми $E_{\rm el}$, діелектричний відгук є чисто оптичним тензором діелектричної проникності ε_{∞} , який можна отримати так:

$$\varepsilon_{\alpha\beta}^{\infty} = \delta_{\alpha\beta} - \frac{4\pi}{\Omega} \frac{\partial^2 E_{\rm el}}{\partial \varepsilon_{\alpha} \partial \varepsilon_{\beta}},\tag{8}$$

де α і β — індекси напрямків у декартовій системі координат, а Ω — об'єм примітивної комірки. Статичну діелектричну проникність можна розкласти на внески різних мод і пораховати(обчислити) узагальненим співвідношенням Лідена-Сакса-Теллера (Lyddane-Sachs-Teller — LST).

$$\varepsilon_0 = \varepsilon_\infty \prod_m \frac{\omega_{LO,m}^2}{\omega_{TO,m}^2},\tag{9}$$

де $\omega_{{
m TO},m}$ — частота поперечної оптичної моди, а $\omega_{\mathrm{LO},m}$ — частота повздовжньої оптичної моди. Це співвідношення розраховується окремо для кожної поляризації. З використанням формалізму DFPT ми обчислили тензор електронної ε_∞ та статичної діелектричної ε_0 проникності для досліджуваного кристала. Згідно з симетрією кристала, тензор є діагональним із такими компонентами: $\varepsilon_{xx} = \varepsilon_{yy} \neq \varepsilon_{zz}$. Розраховано коефіцієнти тензорів ε_0 та наведено в таблиці 7. Як статична, так і електронна діелектрична проникності, подібно до зарядів Борна, мають незначну анізотропію (1.03 для ε_{∞} та 0.98 для ε_{0}). Експериментальне значення діелектричної сталої для кристала AgGaS₂ дорівнює 10 [49], що добре узгоджується із середнім значенням розрахованої в цій праці статичної діелектричної функції, яке дорівнює 10.095.

$\varepsilon^{\infty}_{\alpha\beta}$		$\varepsilon_{lphaeta}$	
$\varepsilon_{xx}^{\infty} = \varepsilon_{yy}^{\infty}$	7.50	$\varepsilon_{xx} = \varepsilon_{yy}^{\infty}$	9.97
$\varepsilon_{zz}^{\infty}$	7.31	ε_{zz}	10.04
$\varepsilon_{xx}^{\infty}/\varepsilon_{zz}^{\infty}$	1.03	$\varepsilon_{xx}/\varepsilon_{zz}$	0.98

Табл. 7. Статична ε_0 та електронна ε_∞ діелектричні константи розраховані для кристала AgGaS₂ використовуючи LDA функціонал

Table 7. Static ε_0 and electronic ε_{∞} dielectric constants calculated for an AgGaS₂ crystal using the LDA functional

IV. ВИСНОВКИ

У цій роботі проведено першопринципні дослідження структури, коливних характеристик та діелектричних властивостей напівпровідникового кристала AgGaS₂ зі структурою халькопіриту. Із використанням теорії збурення функціонала густини розраховано фононний спектр, повну й парціальні густини фононних станів та динамічні параметри. Рівноважну кристалічну структуру досліджено з використанням LDA функціонала. Оптимізовані в процесі обчислень структурні параметри, якими є параметри ґратки та положення атомів, добре узгоджуються з експериментом.

Результати розрахунків фононів показали стабільність кристалічної структури досліджуваної сполуки. Із обчислень фононного спектра випливає, що помітна суттєва анізотропія для низькочастотних акустичних віток коливань. Також спостерігається наявність низькочастотних оптичних віток, які взаємодіють з акустичними. З'ясовано, що густину станів можна розділити на три ділянки — низькочастотну, середньочастотну та високочастотну, які утворені коливаннями атомів Ag, Ga та S відповідно. Розраховані та ідентифіковані частоти коливних мод у центрі зони Бріллюена (Г-точка) показали хороше узгодження з наявними експериментальними даними ІЧ та КР спектрів та теоретичними даними, отриманими з використанням програми Phonon. Проведено симетрійну класифікацію коливних мод для кристала з використанням теорії груп.

Розраховані теоретичні спектри КР показали добре узгодження з експериментальним спектром, наведеним у літературі. З'ясовано, що найінтенсивнішим у спектрі КР є пік за 300.27 см⁻¹, що відповідає повносиметричному коливанню симетрії A_1 , тоді як експериментальна смуга дещо зсунута в бік вищих частот на величину $\Delta \omega \approx 2.7$ см⁻¹. Також отримано ІЧ-спектр для досліджуваного кристала. Побудовано вектори зміщень атомів, які відповідають нормальним коливанням, активним у цих спектрах. Оцінка тензора ефективних зарядів Борна та діелектричних констант у кристалі AgGaS₂ указують на їхню значну анізотропію.

Подяки М. Рудиш висловлює подяку за підтримку програмі PRELUDIUM 15 Польського національного центру науки (Ґрант 2018/29/N/ST3/02901) та Вроцлавському мережево-суперкомпютерному центру (WCSS#10106944). [М. Ya. Rudysh thanks the support by the PRELUDIUM 15 program of Polish National Science Center (Grant No. 2018/29/N/ST3/02901) and Wrocław Centre for Networking and Supercomputing (WCSS#10106944)].

- National Renewable Energy Laboratory, Best Researchcell Efficiencies (United States of America: National Renewable Energy Laboratory, 2020).
- [2] R. S. Feigelson, R. K. Route, Opt. Eng. 26, 262113 (1987); https://doi.org/10.1117/12.7974036.
- [3] J.-J. Zondy, D. Touahri, O. Acef, J. Opt. Soc. Am. B 14, 2481 (1997); https://doi.org/10.1364/JOSAB.14.002

481.

- [4] O. G. Vlokh, A. V. Caryk, Visn. Lviv un-tu. Phys. Ser. 16, 13 (1982).
- [5] R. Smith, J. Phys. Colloques. 36, C3-89 (1975); https: //doi.org/10.1051/jphyscol:1975318.
- [6] S. M. Asadov, S. N. Mustafaeva, D. T. Guseinov, K. I. Kelbaliev, Tech. Phys. 63, 546 (2018); https:

//doi.org/10.1134/S1063784218040047.

- S. M. Asadov, S. N. Mustafaeva, D. T. Guseinov, Inorg. Mater. 53, 457 (2017); https://doi.org/10.1134/S002 0168517050028.
- [8] M. Akdogan, R. Eryigit, J. Phys.: Condens. Matter. 14, 7493 (2002); https://doi.org/10.1088/0953-8984/14 /32/309.
- C. Parlak, R. Eryigt, Phys. Rev. B 73, 245217 (2006); https://doi.org/10.1103/PhysRevB.73.245217.
- [10] Y. Yu, Y. H. Shen, J. Deng, X. L. Zheng, G. D. Zhao, Chalcogenide Lett. 14, 447 (2017).
- [11] R. Eryigit, C. Parlak, R. Erygit, Eur. Phys. J. B 33, 251 (2003); https://doi.org/10.1140/epjb/e2003-001 63-x.
- [12] J. Lazewski, K. Parrlinski, B. Hennion, R. Fouret, J. Phys.: Condens. Matter. 11, 9665 (1999); https: //doi.org/10.1088/0953-8984/11/48/323.
- [13] Y. Yu, G. D. Zhao, X. L. Zheng, Z. R. Wei, Chalcogenides Lett. 13, 15 (2016).
- [14] M. Ya. Rudysh et. al., Infrared Phys. Technol. 111, 103476 (2020); https://doi.org/10.1016/j.infrared .2020.103476.
- [15] J. Lazewski, K. Parlinski, J. Phys.: Condens. Matter. 11, 9673 (1999).
- [16] Y. Cui et. al., Solid State Commun. 150, 1686 (2010); https://doi.org/10.1016/j.ssc.2010.06.022.
- [17] D. J. Lockwood, H. Montgomery, J. Phys. C: Solid State Phys. 8, 324119 (1975); https://doi.org/10.1088/00 22-3719/8/19/023.
- [18] D. Lockwood, H. Montgomery, J. Phys. Colloques 36, C3-183 (1975); https://doi.org/10.1051/jphyscol:19 75333.
- [19] H. Matsushita, S. Endo, T. Irie, Jpn. J. Appl. Phys. 31, 18 (1992); https://doi.org/10.1143/jjap.31.18.
- [20] J. Lażewski, K. Parlinski, J. Chem. Phys. 114, 6734 (2001); https://doi.org/10.1063/1.1356018.
- [21] G. D. Holah, J. S. Webb, H. Montgomery, J. Phys. C: Solid State Phys. 7, 3875 (1974); https://doi.org/10 .1088/0022-3719/7/21/010.
- [22] S. J. Clark et. al., Z. Krist. Cryst. Mater. 220, 567 (2005); https://doi.org/10.1524/zkri.220.5.567 .65075.
- [23] P. Hohenberg, W. Kohn, Phys. Rev. 136, B864 (1964); https://doi.org/10.1103/PhysRev.136.B864.
- [24] W. Kohn, L. J. Sham, Phys. Rev. 140, A1133 (1965); https://doi.org/10.1103/PhysRev.140.A1133.
- [25] D. R. Hamann, M. Schluter, C. Chiang, Phys. Rev. Lett. 43, 1494 (1979); https://doi.org/10.1103/PhysRevL ett.43.1494.
- [26] D. M. Ceperley, B. J. Alder, Phys. Rev. Lett. 45, 566 (1980); https://doi.org/10.1103/PhysRevLett.45 .566.
- [27] J. P. Perdew, A. Zunger, Phys. Rev. B. 23, 5048 (1981);

https://doi.org/10.1103/PhysRevB.23.5048.

- [28] H. J. Monkhorst, J. D. Pack, Phys. Rev. B. 13, 5188 (1976); https://doi.org/10.1103/PhysRevB.13.5188.
- [29] S. Baroni, P. Giannozzi, A. Testa, Phys. Rev. Lett. 58, 1861 (1987); https://doi.org/10.1103/PhysRevLett. 58.1861.
- [30] C. G. Broyden, J. Inst. Math. Appl. 6, 76 (1970); https: //doi.org/10.1093/imamat/6.1.76.
- [31] R. Fletcher, Comp. J. 13, 317 (1970); https://doi.or g/10.1093/comjnl/13.3.317.
- [32] D. Goldfarb, Math. Comput. 24, 23 (1970); https://do i.org/10.1090/S0025-5718-1970-0258249-6.
- [33] D. F. Shanno, Math. Comput. 24, 647 (1970); https: //doi.org/10.2307/2004840.
- [34] J. Zhang et. al., Adv. Mater. 26, 3848 (2014); https: //doi.org/10.1002/adma.201400058.
- [35] G. Brandt, A. Rauber, J. Schneider, Solid State Commun. 12, 481 (1973).
- [36] A. Majchrowski et. al., J. Mater. Sci. 53, 1217 (2018); https://doi.org/10.1007/s10853-017-1554-z.
- [37] P. A. Shchepanskyi, V. Yo. Stadnyk, M. Ya. Rudysh,
 R. S. Brezvin, B. V. Andrievskii, Opt. Spectroscop. 125, 353 (2018); https://doi.org/10.1134/S0030400X18090 217.
- [38] M. Chrunik et. al., Curr. Appl. Phys. 17, 1100 (2017); https://doi.org/10.1016/j.cap.2017.05.001.
- [39] M.Ya. Rudysh et. al., J. Alloys Compd. 826, 154232 (2020); https://doi.org/10.1016/j.jallcom.2020.1 54232.
- [40] I. V. Semkiv, H. A. Ilchuk, A. I. Kashuba, R. Yu. Petrus, V. V. Kusnezh, J. Nano- Electron. Phys. 8, 03005 (2016); https://doi.org/10.21272/jnep.8(3).03005.
- [41] M. Ya. Rudysh et. al., Physica B: Phys. Cond. Matter 528, 37 (2018); https://doi.org/10.1016/j.physb.20 17.10.085.
- [42] Г. Н. Жижин, Б. Н. Маврин, В. Ф. Шабанов, Onmuческие колебательные спектры кристаллов (Наука, Москва, 1984).
- [43] M. Ya. Rudysh et. al., J. Appl. Spectrosc. 85, 896 (2018); https://doi.org/10.1007/s10812-019-00754-z.
- [44] X. Gonze, C. Lee, Phys. Rev. B 55, 10355 (1997); https: //doi.org/10.1103/PhysRevB.55.10337.
- [45] D. Porezag, M. R. Pederson, Phys. Rev. B 54 (1996) 7830; https://doi.org/10.1103/PhysRevB.54.7830.
- [46] B. Zhou, Q. Su, D.-Y. He, Chin. Phys. B 18, 4988 (2009); https://doi.org/10.1088/1674-1056/18/11/062.
- [47] Y. Yu et. al., Chin. Phys. B 26, 046302 (2017); https: //doi.org/10.1088/1674-1056/26/4/046302.
- [48] X. Zhao, D. Vanderbilt, Phys. Rev. B 65, 075105 (2002); https://doi.org/10.1103/PhysRevB.65.075105.
- [49] P. Paufler, Landolt-Börnstein. New Series (Springer, Berlin, 1979); https://doi.org/10.1002/crat.2170181 220.

CALCULATION OF THE VIBRATIONAL SPECTRA OF AgGaS₂ CRYSTAL WITH CHALCOPYRITE STRUCTURE

M. Ya. Rudysh^{1,2,3,4}, A. I. Kashuba⁴, P. A. Shchepanskyi^{1,2,4}, R. Yu. Petrus⁴, V. Yo. Stadnyk¹, M. Piasecki²
 ¹Ivan Franko National University of Lviv, 19, Drahomanov St., Lviv, UA-79005, Ukraine
 ²Jan Długosz University in Częstochowa, 13/15, Armii Krajowej Al., Częstochowa, PL-42-200, Poland
 ³Lesya Ukrainka Volyn National University, 9, Potapov St., Lutsk, UA-43025, Ukraine
 ⁴Lviv Polytechnic National University, 12, Bandera St., Lviv, UA-79013, Ukraine

Ternary semiconductor materials with a chalcopyrite structure belonging to the I–III–VI₂ group (where I = Ag, Cu; III = Al, Ga, In; VI = S, Se, Te) attract considerable attention due to interesting physical properties. The structural, electronic and optical properties of these crystals make them promising materials for a number of applications in nonlinear optics devices, detectors, photodiodes, solar cells, etc. In this work, the theoretical first-principle calculations of the structural, vibrational and dielectric properties of an AgGaS₂ crystal with a chalcopyrite structure are performed. We report the results of the calculations of the phonon band structure $\omega(q)$, total and partial density of phonon states $N(\omega)$, infrared spectra and Raman spectra, the Born effective charge tensor for each atom, and dielectric constants (for $\omega = 0$ and $\omega \to 0$) using the theory of perturbation of the density functional. Theoretical-group analysis of vibrational modes is carried out and the classification of vibrations in the phonon spectra of the investigated compound is performed.

The results of the phonons calculations showed the stability of the crystal structure of the studied compound. It follows from the calculations of the phonon spectrum that there is a significant anisotropy of low-frequency acoustic branches of vibrations. There is also a presence of low-frequency optical branches that interact with acoustic ones. It was found that the density of states can be divided into three parts — low-frequency, medium-frequency and high-frequency regions, which are formed by the oscillations of Ag, Ga and S atoms, respectively. The calculated and identified frequencies of vibrations modes in the center of the Brillouin zone (Γ point) showed good agreement with the available experimental data on IR and Raman spectra and theoretical data obtained using the Phonon program. A symmetric classification of vibrational modes for a crystal using group theory is performed. Estimation of the Born effective charge tensor and dielectric constants in an AgGaS₂ crystal indicates their significant anisotropy.

Key words: $AgGaS_2$, DFPT, phonon, linear response theory, Born effective charges, vibrational spectra.