ОСОБЛИВОСТІ ПЕРЕНОРМУВАННЯ ОПТИЧНИМИ ФОНОНАМИ ЕЛЕКТРОННОГО СПЕКТРА В КАСКАДІ КВАНТОВОГО КАСКАДНОГО ДЕТЕКТОРА

Ю. О. Сеті[©], Є. Ю. Верешко[©], М. В. Ткач[©], О. М. Войцехівська[©]

Чернівецький національний університет ім. Ю. Федьковича,

вул. Коцюбинського, 2, Чернівці, 58012, Україна

e-mail: j.seti@chnu.edu.ua

(Отримано 07 червня 2021 р.; в остаточному вигляді — 21 серпня 2021 р.; прийнято до друку — 30 серпня 2021 р.; опубліковано онлайн — 10 вересня 2021 р.)

В однофононному наближенні на основі гамільтоніана електрон-фононної системи в зображенні вторинного квантування за всіма змінними методом функцій Ґріна досліджено перенормування обмеженими та інтерфейсними фононами спектральних характеристик каскаду широкосмугового квантового каскадного детектора далекого інфрачервоного діапазону. Встановлено, що взаємодія з усіма гілками оптичних фононів приводить до низькоенерґетичних зміщень та загасань станів електрона, величини яких зростають із підвищенням температури. Виявлена переважна роль інтерфейсних фононів у перенормуванні спектральних характеристик електрона. Показано, що зміна товщини потенціального бар'єра у двоямній активній зоні може приводити до різкого зростання і зміщень, і загасань високоенерґетичних станів електрона.

Ключові слова: наносистема, електрон, фонон, квантовий каскадний детектор, функція Ґріна.

DOI: https://doi.org/10.30970/jps.25.3706

I. ВСТУП

Як відомо [1–4], унікальні характеристики квантових каскадних детекторів (ККД) інфрачервоного діапазону, як-от: мінімальні темнові струми, висока детектувальна здатність, широкий діапазон робочих температур, компактні розміри тощо, роблять ці наноприлади перспективними для моніторингу навколишнього середовища, навіґації, астрономії, медичної діагностики, військової сфери, наукових досліджень та інших прикладних застосувань. Тому після появи перших ККД середнього ІЧ-діапазону [5, 6] вже понад 15 років не припиняються теоретичні й експериментальні дослідження, спрямовані на поліпшення їхніх властивостей. Як результат були створені ККД різноманітного дизайну з різними фізичними та геометричними параметрами каскадів, частоти яких охоплюють увесь ІЧ-діапазон. Зокрема, переважну більшість ККД середнього й далекого ІЧ-діапазонів [7–11]роблять на основі ізотропних напівпровідників GaAs, InAs, AlGaAs, InAlAs, InGaAs. Для ККД ближнього ІЧ-діапазону [12–15] використовують анізотропні GaN, AlN, InGaN, AlGaN з вюрцитною структурою, які для електрона в наноструктурі утворюють глибокі потенціальні ями "трикутного" профілю.

Оскільки фізичною основою функціонування ККД є квантові переходи між електронними станами в наноструктурах каскадів, то ці прилади здебільшого характеризуються досить вузькою смугою поглинання, через що вони виявляються малопридатними для тих сфер, які потребують детектування випромінювання в широкому діапазоні частот (ІЧ-візуалізація, спектральний аналіз, космічні дослідження та інші). Нещодавно в роботах [16, 17] був реалізований ККД із широкою смугою поглинання електромагнітних хвиль у далекому ІЧ-діапазоні від 7.6µ m до 10.4µ m і була вивчена залежність ширини смуги поглинання приладу від товщини потенціального бар'єра у двоямній активній зоні каскадів.

Не зважаючи на інтенсивні експериментальні розсліди, повна й послідовна теорія фізичних процесів у каскадах ККД ще й досі відсутня, оскільки вона вимагає побудови реалістичних моделей багатошарових наноструктур з урахуванням основних фізичних механізмів їх функціонування, зокрема взаємодії багатозонних електронних станів із багатомодовими фононами.

Часто теоретичні дослідження [18–23] спектрів квазічастинок у наноструктурах хоч і дозволяли зрозуміти загальні властивості цих систем, однак впливу фононів вони не враховували. У тих працях, де вивчали електрон-фононну взаємодію [24–27], зазвичай теорія розвивалася в поширеній моделі діелектричного континууму [28, 29]. У більшості робіт цього напряму автори розраховували гамільтоніан системи в зображенні вторинного квантування за фононними змінними й у координатному зображенні за електронними. Такий підхід дозволяв розрахувати за правилом Фермі ймовірності фонон-супровідних квантових переходів або пов'язаних з ними фізичних величин, однак не враховуючи перенормування фононами спектральних параметрів наноструктур. Метою пропонованої роботи є вивчення малодослідженого одночасного впливу всіх гілок обмежених та інтерфейсних фононів на спектральні характеристики електронних станів багатошарової наноструктури як каскаду широкосмугового квантового каскадного детектора далекого інфрачервоного діапазону [16, 17]. Вибір фізичних та геометричних параметрів потенціальних ям (GaAs) та бар'єрів (Al_{0.33}Ga_{0.67}As) каскаду згідно з експериментальними роботами [16, 17] дав змогу не лише встановити ступінь узгодження результатів теоретичної моделі з експериментом, але й виявити фізичні ефекти, зумовлені електрон-фононною взаємодією.

II. ГАМІЛЬТОНІАН ТА МАСОВИЙ ОПЕРАТОР ЕЛЕКТРОН-ФОНОННОЇ СИСТЕМИ

Розглянуто N-шарову напівпровідникову наноструктуру (рис. 1) з (N + 1)/2 потенціальними ямами та (N-1)/2-бар'єрами як каскад ККД з відомими фізичними та геометричними параметрами. У декартовій системі координат з віссю Oz, перпендикулярною до площин поділу між наношарами структури, потенціальна енерґія та ефективна маса електрона задаються виразами:

$$U(z) = \begin{cases} 0, & z_j < z < z_{j+1}, \ j = 0, 2, 4, \dots, N-1 \\ U, & z_{j-1} < z < z_j, \ j = 0, 2, 4, \dots, N+1 \end{cases},$$
(1)

$$m(E,z) = \begin{cases} m_{\rm w}(E) = m_{\rm w} \left(1 + \frac{E}{E_{g{\rm w}}}\right), & z_j < z < z_{j+1}, \, j = 0, 2, 4, \dots, N-1 \\ \\ m_{\rm b}(E) = m_{\rm b} \left(1 - \frac{U - E}{E_{g{\rm b}}}\right), & z_{j-1} < z < z_j, \, j = 0, 2, 4, \dots, N+1 \end{cases}$$

$$(2)$$

Тут ефективна маса враховує непараболічність зони провідності згідно з [30]; z_j — координати меж між ямами й бар'єрами, $z_{-1} = -\infty$, $z_{N+1} = +\infty$; U — висоти потенціальних бар'єрів; m_w , m_b та E_{gw} , E_{gb} — ефективні маси та ширини заборонених зон у масивних аналогах середовищ ям та бар'єрів.

Шукаючи хвильову функцію електрона у вигляді [31, 32]

$$\Psi_{n\mathbf{k}}(\mathbf{r}) = \frac{e^{i\mathbf{k}\rho}}{L}\Psi_n(z), \quad (\mathbf{r} = \rho\,\mathbf{n}_\rho + z\mathbf{n}_z) \tag{3}$$

з тримірного стаціонарного рівняння Шрединґера отримуємо повні енерґії $E_{n\mathbf{k}} = E_n + \hbar^2 \mathbf{k}^2 / 2m_n$ і рівняння для визначення хвильових функцій $\Psi_n(z)$ та енерґій E_n квантованих станів електрона. Тут L — довжина основної ділянки в площині xOy, **k** — квазімпульс електрона в цій же площині.

 Φ ункції $\Psi_n(z)$ знаходяться точно у вигляді:

$$\Psi_{n}(z) = \begin{cases} \Psi_{n}^{(j)}(z) = A_{n}^{(j)}e^{\chi_{n}z} + B_{n}^{(j)}e^{-\chi_{n}z}, & j = 0, 2, \dots, N+1 \\ z_{j-1} \le z < z_{j}, \\ \Psi_{n}^{(j)}(z) = A_{n}^{(j)}\cos k_{n}z + B_{n}^{(j)}\sin k_{n}z, \quad j = 1, 3, \dots, N, \end{cases}$$
(4)

де

$$k_n = \sqrt{\frac{2m_{\rm w}(E_n)E_n}{\hbar^2}}, \qquad \qquad \chi_n = \sqrt{\frac{2m_{\rm b}(E_n)(U-E_n)}{\hbar^2}}.$$

Умови неперервності функцій $\Psi_n(z)$ та потоків їхніх густин імовірностей [31, 32] приводять до дисперсійного рівняння, з якого числовим розрахунком отримуємо енергії (E_n) електрона. Ці ж умови разом з умовою нормування хвильової функції та умовою скінченності функцій на безмежності однозначно визначають усі коефіцієнти $A_n^{(j)}$ та $B_n^{(j)}$ $(j = 0, \ldots, N+1).$

Тепер за правилами вторинного квантування [32– 34] на квантованій хвильовій функції

$$\hat{\Psi}(\mathbf{r}) = \sum_{n, \mathbf{k}} \Psi_{n\mathbf{k}}(\mathbf{r}) a_{n\mathbf{k}}$$
(5)

отримуємо гамільтоніан електронів у зображенні чисел заповнення

$$\hat{H}_e = \sum_{n,\mathbf{k}} E_{n\mathbf{k}} a_{n\mathbf{k}}^+ a_{n\mathbf{k}}, \qquad (6)$$

де $a_{n\mathbf{k}}^+$, $a_{n\mathbf{k}}$ — оператори народження та знищення електронних станів.

Рис. 1. Геометрична й енергетична схеми багатошарової наноструктури

Як відомо [28, 29, 32], у моделі ізотропного діелектричного континууму є два типи оптичних фононів: обмежені (L) та інтерфейсні (I). Потенціали полів поляризації L-фононів на всіх межах гетероструктури дорівнюють нулеві, а І-фононів — приймають максимальні значення. Енергії обмежених фононів $\Omega_{Lj} = \hbar\omega_{Lj}$ збігаються з енергіями поляризаційних поздовжніх фононів у відповідних масивних аналогах ям і бар'єрів структури. Гамільтоніан L-фононів у зображенні чисел заповнення має вигляд

$$\hat{H}_{\rm L} = \sum_{j=1}^{N} \sum_{s=1}^{\infty} \sum_{\mathbf{q}} \Omega_{{\rm L}j} \left(b_{js\mathbf{q}}^{+} b_{js\mathbf{q}} + \frac{1}{2} \right), \qquad (7)$$

де b_{jsq}^+, b_{jsq} — оператори народження та знищення станів L-фононів.

Для інтерфейсних фононів умови неперервності на всіх межах гетероструктури потенціалу поля поляризації $\varphi(q, z) = \sum_{j=0}^{N+1} \varphi_j(q, z) = \sum_{j=0}^{N+1} (\alpha_j e^{-qz} + \beta_j e^{qz})$ та вектора електронного зміщення ($\varepsilon(\omega) \frac{\partial}{\partial z} \varphi(q, z)$, $\varepsilon(\omega)$ — діелектрична проникність) приводять до системи 2(N+1) лінійних однорідних рівнянь, з умови рівності нулеві визначника якої отримуємо дисперсійне рівняння для розрахунку енергій $\Omega_{I\lambda} = \hbar \omega_{I\lambda}$ всіх гілок (λ) І-фононів. Із цієї ж системи рівнянь сумісно з умовою нормування [28, 29, 32] визначаємо всі коефіцієнти α_j та β_j . Гамільтоніан інтерфейсних фононів також отримуємо в зображенні чисел заповнення

$$\hat{H}_{\rm I} = \sum_{\lambda, \mathbf{q}} \Omega_{\lambda}(q) \left(b_{\lambda \mathbf{q}}^+ b_{\lambda \mathbf{q}} + \frac{1}{2} \right), \tag{8}$$

де $b_{\lambda q}^+$, $b_{\lambda q}$ — оператори народження та знищення станів І-фононів.

Після здійсненого квантування обох фононних полів (L та I) тепер за відомою процедурою [29, 32–34] гамільтоніан електрон-фононної взаємодії переводимо з координатного зображення в зображення вторинного квантування за всіма змінними системи

$$\dot{H}_{\rm e-ph} = \dot{H}_{\rm e-L} + \dot{H}_{\rm e-I}.$$
(9)

Тут

$$\hat{H}_{e-L} = \sum_{j=1}^{N} \sum_{s,\mathbf{q}} \sum_{n',n,\mathbf{k}} F_{n'n}^{L(j)}(s,q) a_{n'\mathbf{k}+\mathbf{q}}^{+} a_{n\mathbf{k}}(b_{js,\mathbf{q}}+b_{js,-\mathbf{q}}^{+})$$
(10)

— гамільтоніан взаємодії електронів з L-фононами з функціями зв'язку

$$F_{n'n}^{\mathcal{L}(j)}(s,q) = -\frac{1}{L\sqrt{\frac{(\pi s)^2}{(z_j - z_{j-1})^2} + q^2}} f_{n'n}^{\mathcal{L}(j)}(s); \qquad (11)$$

де

$$f_{n'n}^{\mathbf{L}(j)}(s) = (-1)^{\frac{s-\theta(s)}{2}} \sqrt{\frac{4\pi e^2}{(z_j - z_{j-1}) \frac{\partial \varepsilon_j(\Omega)}{\partial \Omega}}}_{\Omega = \Omega_{\mathbf{L}j}}$$
$$\times \int_{z_{j-1}}^{z_j} \Psi_{n'}^{(j)*}(z) \sin\left(\pi s \frac{z - z_{j-1}}{z_j - z_{j-1}}\right) \Psi_n^{(j)}(z) dz, \quad (12)$$

 $\theta(s) = 1$ для непарних s та $\theta(s) = 0$ для парних s;

$$\hat{H}_{\mathrm{e-I}} = \sum_{\lambda,\mathbf{q}} \sum_{n,n',\mathbf{k}} F_{n'n}^{\mathrm{I}}(\lambda,q) a_{n'\mathbf{k}+\mathbf{q}}^{+} a_{n'\mathbf{k}} \left(b_{\lambda,\mathbf{q}} + b_{\lambda,-\mathbf{q}}^{+} \right)$$
(13)

— гамільтоніан взаємодії електронів з І-фононами з функціями зв'язку

$$F_{n'n}^{\mathrm{I}}(\lambda,q) = -\sqrt{\frac{4\pi e^2}{qL^2}} f_{n'n}^{\mathrm{I}}(\lambda,q); \qquad (14)$$

де

$$f_{n'n}^{I}(\lambda,q) = \frac{1}{\sqrt{\sum_{j=0}^{N+1} [\beta_{j}^{2}(e^{2qz_{j}} - e^{2qz_{j-1}}) - \alpha_{j}^{2}(e^{-2qz_{j}} - e^{-2qz_{j-1}})] \left. \frac{\partial \varepsilon_{j}(\Omega)}{\partial \Omega} \right|_{\Omega = \Omega_{I\lambda}}}}{\times \sum_{j=0}^{N+1} \int_{z_{j-1}}^{z_{j}} \Psi_{n'}^{(j)*}(z)\varphi_{j}(q,z)\Psi_{n}^{(j)}(z)dz.}$$
(15)

Знайдений повний гамільтоніан електрон-фононної системи $(\hat{H} = \hat{H}_e + \hat{H}_{\rm L} + \hat{H}_{\rm I} + \hat{H}_{\rm e-ph})$ дозволяє розрахувати

Фур'є-образи електронних функцій Ґріна, які, за слабкого електрон-фононного зв'язку, згідно з діаграмною технікою Фейнмана–Пайнса [32–34], визначаються рівнянням Дайсона

$$G_n(\hbar\omega, \mathbf{k}) = \frac{1}{\hbar\omega - E_{n\mathbf{k}} - M_n(\hbar\omega, \mathbf{k})},\tag{16}$$

де масові оператори, розраховані в однофононному наближенні, задаються виразами

$$M_{n}^{\mathrm{L}}(\hbar\omega,\mathbf{k}) = \sum_{n'} \sum_{j=1}^{N} \sum_{s,\mathbf{q}} F_{nn'}^{\mathrm{L}(j)*}(s,q) F_{n'n}^{\mathrm{L}(j)}(s,q) \times \left[\frac{1+\nu_{j}}{\hbar\omega - E_{n'}(\mathbf{k}-\mathbf{q}) - \Omega_{\mathrm{L}j} + i\eta} + \frac{\nu_{j}}{\hbar\omega - E_{n'}(\mathbf{k}+\mathbf{q}) + \Omega_{\mathrm{L}j} + i\eta} \right],$$
(17)

$$M_{n}^{I}(\hbar\omega, \mathbf{k}) = \sum_{n'} \sum_{\lambda, \mathbf{q}} F_{nn'}^{I*}(\lambda, q) F_{n'n}^{I}(\lambda, q) \\ \times \left[\frac{1 + \nu_{\lambda}(q)}{\hbar\omega - E_{n'}(\mathbf{k} - \mathbf{q}) - \Omega_{I\lambda}(q) + i\eta} + \frac{\nu_{\lambda}(q)}{\hbar\omega - E_{n'}(\mathbf{k} + \mathbf{q}) + \Omega_{I\lambda}(q) + i\eta} \right],$$
(18)

де $\nu_{\lambda}(q) = (e^{\Omega_{I\lambda}(q)/k_{B}T} - 1)^{-1}, \nu_{j} = (e^{\Omega_{Lj}/k_{B}T} - 1)^{-1}$ – числа заповнення I та L фононів; k_{B} – стала Больцмана. Подальший розрахунок масових операторів (17) та (18) здійснюємо переходом від суми за двовимірним

квазіімпульсом **q** фононів до інтеґрала та з використанням теореми Сохоцького

$$\iint (f(\mathbf{q}) + i\eta)^{-1} d^2 \mathbf{q} = \text{V.p.} \iint \frac{d^2 \mathbf{q}}{f(\mathbf{q})} - i\pi \iint \delta(f(\mathbf{q})) d^2 \mathbf{q},$$

де V.p. позначає інтеґрал у розумінні головного значення.

Для подальших розрахунків, як і в більшості теоретичних робіт [18–29], вважатимемо рух електронів одномірним уздовж наноструктури ($\mathbf{k} = 0$). Тоді унаслідок точного інтеґрування за фононним квазіімпульсом **q** для $M_n^{\rm L}$ отримуємо вираз

$$M_{n}^{L}(\xi, k = 0) = -\sum_{n'} \sum_{j=1}^{N} \sum_{s=1}^{\infty} \frac{f_{nn'}^{L(j)*}(s) f_{n'n}^{L(j)}(s) l_{j}}{4\pi\Omega_{0}} \\ \times \left[\left(1 + \nu_{j}\right) \begin{cases} \zeta_{nn'}^{(j)+}(s,\xi), & \frac{E_{n'} - E_{n} + \Omega_{Lj}}{\Omega_{0}} \ge \xi \\ \vartheta_{nn'}^{(j)+}(s,\xi) + \frac{i\pi}{(\pi s)^{2} + l_{j} \left| \frac{E_{n'} - E_{n} + \Omega_{Lj}}{\Omega_{0}} - \xi \right|}, \frac{E_{n'} - E_{n} + \Omega_{Lj}}{\Omega_{0}} < \xi \\ (\pi s)^{-2}, & (\pi s)^{2} = \pm l_{j} \left(\frac{E_{n'} - E_{n} + \Omega_{Lj}}{\Omega_{0}} - \xi \right) \end{cases} \right\} \\ + \left. \nu_{j} \begin{cases} \zeta_{nn'}^{(j)-}(s,\xi), & \frac{E_{n'} - E_{n} - \Omega_{Lj}}{\Omega_{0}} \ge \xi \\ \vartheta_{nn'}^{(j)-}(s,\xi) + \frac{i\pi}{(\pi s)^{2} + l_{j} \left| \frac{E_{n'} - E_{n} - \Omega_{Lj}}{\Omega_{0}} - \xi \right|}, \frac{E_{n'} - E_{n} - \Omega_{Lj}}{\Omega_{0}} \le \xi \\ (\pi s)^{-2}, & (\pi s)^{2} = \pm l_{j} \left(\frac{E_{n'} - E_{n} - \Omega_{Lj}}{\Omega_{0}} - \xi \right) \end{cases} \right\} \right].$$
(19)

Тут уведені позначення

$$\begin{split} \zeta_{nn'}^{(j)\pm}(s,\xi) &= \frac{\ln\left[\frac{(\pi s)^2}{l_j \left(\frac{E_{n'}-E_n\pm\Omega_{Lj}}{\Omega_0}-\xi\right)}\right]}{(\pi s)^2 - l_j \left(\frac{E_{n'}-E_n\pm\Omega_{Lj}}{\Omega_0}-\xi\right)}, \quad \vartheta_{nn'}^{(j)\pm}(s,\xi) &= \frac{\ln\left|\frac{(\pi s)^2}{l_j \left(\frac{E_{n'}-E_n\pm\Omega_{Lj}}{\Omega_0}-\xi\right)}\right|}{(\pi s)^2 - l_j \left|\frac{E_{n'}-E_n\pm\Omega_{Lj}}{\Omega_0}-\xi\right|},\\ \xi &= \frac{\omega - E_n}{\Omega_0}, \qquad \qquad l_j &= \frac{2\Omega_0 m_j (E_n) (z_j - z_{j-1})}{\hbar^2}, \end{split}$$

 Ω_0 — стала розмірності енерґії.

3706-4

Щодо І-фононів, то через залежність енергій $\Omega_{I\lambda}$ їхніх гілок від q інтеґрування у (18) виконується чисельно за $\mathbf{k} = 0$.

Згідно з теорією функцій Ґріна зміщення (Δ_n) та загасання (γ_n) *n*-го електронного стану, що зумовлені взаємодією з фононами, визначаємо дійсною та уявною частинами масових операторів:

$$\Delta_n = \Delta_n^{\mathrm{L}} + \Delta_n^{\mathrm{I}} = \operatorname{Re} M_n^{\mathrm{L}}(E_n, 0) + \operatorname{Re} M_n^{\mathrm{I}}(E_n, 0), \quad (20)$$

$$\gamma_n = \gamma_n^{\rm L} + \gamma_n^{\rm I} = -2(\operatorname{Im} M_n^{\rm L}(E_n, 0) + \operatorname{Im} M_n^{\rm I}(E_n, 0)).$$
(21)

Тут $\Delta_n^{\rm L}$, $\gamma_n^{\rm L}$ та $\Delta_n^{\rm I}$, $\gamma_n^{\rm I}$ — парціальні складники зміщень та загасань електронних станів, які виникають під час взаємодії з L- та І-фононами відповідно.

III. ВЛАСТИВОСТІ ЕЛЕКТРОН-ФОНОННОЇ ВЗАЄМОДІЇ У КАСКАДІ ККД

Досліджували вплив обмежених та інтерфейсних фононів на стани електрона на прикладі каскаду широкосмугового ККД далекого ІЧ-діапазону, який експериментально реалізований у роботах [16, 17]. Фізичні параметри структури з GaAs-ямами та Al_{0.33}Ga_{0.67}As-бар'єрами відомі: $\varepsilon_{\infty w} = 9.99$, $\varepsilon_{\infty b} = 10.89$, $\Omega_{Lw} = 36.25$ meV, $\Omega_{Lb} = 40.82$ meV, $\Omega_{Tw} = 33.29$ meV, $\Omega_{Tb} = 37.12$ meV, $m_w = 0.067 \ m_e, \ m_b = 0.095 \ m_e, \ E_{gw}^{T=0\,K} = 1520$ meV, $E_{gb}^{T=0\,K} = 1885$ meV, $E_{gw}^{T=300\,K} = 1420$ meV, $E_{gb}^{T=300\,K} = 1788$ meV, $U^{T=0\,K} = 276$ meV, $U^{T=300\,K} = 256$ meV. Геометричні розміри ям та бар'єрів каскаду вибирали такими ж, як і в експериментальному ККД [16, 17]: $6.8/b_1/6.8/5.65/2/3.955/2.3/3.1/2.8/3.1/3.4/3.1/3.8/3.1/4.8$ (nm). Тут жирним шрифтом позначені товщини потенціальних бар'єрів, а b_1 — товщина бар'єра у двоямній активній зоні.

Як уже зазначено, ККД з широкою смугою поглинання є важливими приладами для прикладних застосувань. Тому в експериментальних роботах [16, 17] був запропонований метод розширення смуги поглинання ККД вибором активної зони з двома потенціальними ямами однакових ширин $(a_1 = a_2 = 6.8 \text{ nm}).$ У такій двоямній активній зоні, на відміну від типової одноямної, поглинання електромагнітного випромінювання відбувається під час квантових переходів між двома парами розщеплених електронних станів. Згідно з результатами експерименту [16, 17], що узгоджуються із загальними висновками досліджень оптичних властивостей двоямних структур [35], ширину смуги поглинання наноприладу здебільшого визначають товщиною бар'єра b_1 у двоямній активній зоні. Тому дослідимо вплив величини b_1 на спектральні характеристики структури.

Для вивчення особливостей перенормування електронних станів взаємодією з оптичними фононами залежно від b_1 спершу розраховували неперонормовані енергії електрона та енергії всіх гілок L та I фононів.

На рис. 2 показана еволюція енерґетичного спектра (E_n) електрона залежно від товщини бар'єра b_1 у двоямній активній зоні за кріогенної (T = 0 K) та кімнатної (T = 300 K) температур. Розрахунки густин імовірностей показали, що за фіксованої товщини бар'єра в інтервалі $1 \text{ nm} \le b_1 \le 5 \text{ nm}$ незалежно від температури електрон у станах з енергіями E_1 , E₂, E₈ та E₁₀ локалізований у двоямній активній зоні, а в станах з енергіями $E_3 \div E_7$, E_9 та E_{11} — в екстракторі каскаду. Квантові переходи з E_1 та E_2 у E_8 та Е₁₀ забезпечують поглинання детектором випромінювання далекого IЧ-діапазону. Енергії $E_3 \div E_7$ та E_9 утворюють так звану "фононну драбинку", якою відбувається фонон-супровідне тунелювання електронів між активними зонами каскадів із релаксацією енергії під час випромінювання оптичних фононів. Найвищий стан n = 11 у роботі приладу безпосередньої участі не бере.

Рис. 2. Залежності неперенормованих взаємодією з фононами енергій (E_n) електрона від товщини потенціального бар'єра b_1 у двоямній активній зоні за T = 0 К (пунктирні криві) та T = 300 К (суцільні криві)

Fig. 2. Dependences of electron energies non-renormalized due to interaction with phonons (E_n) on potential barrier thickness (b_1) in two-well active region at T = 0 K (dotted curves) and at T = 300 K (solid curves)

Із рис. 2 видно, що зі збільшенням b_1 , згідно з експериментом [16, 17], енергії робочих станів (n = 1, 2; 8, 10) попарно зближаються, що й приводить до зменшення ширини смуги поглинання ККД. Енергії станів (n = 3 - 7, 9) "фононної драбинки" практично не змінюються зі зростанням b_1 . За фіксованої товщини бар'єра b_1 з підвищенням температури через зміну величин ефективних мас та висот потенціальних бар'єрів спостерігається низькоенергетичне зміщення всіх станів електрона.

На рис. 3 наведені залежності енергій ($\Omega_{I\lambda}$) всіх гілок (λ) інтерфейсних фононів від квазіімпульсу q за товщин бар'єра $b_1 = 1$ nm та $b_1 = 5$ nm. На цих же рисунках зображені енергії повздовжніх (Ω_{Lw} , Ω_{Lb}) та поперечних (Ω_{Tw} , Ω_{Tb}) фононів масивних кристалів GaAs та Al_{0.33}Ga_{0.67}As.

Із рис. 3 видно, що незалежно від товщини бар'єра b₁ спектр І-фононів містить 32 гілки енерґій, які утворюють дві підзони в інтервалах між Ω_{Tw} і Ω_{Lw} та Ω_{Tb} і Ω_{Lb} відповідно. Зі збільшенням квазіімпульсу q енергії $\Omega_{I\lambda}$ в обох підзонах збігаються. Зміна товщини b_1

помітно впливає на дисперсію енергій лише чотирьох гілок $\lambda = 1, 16, 17, 32$ і практично не змінює всіх інших $\Omega_{I\lambda}(q)$.

Рис. 3. Залежності енергій інтерфейсних ($\Omega_{I\lambda}$, $\lambda = 1-32$) та обмежених (Ω_{Lw} , Ω_{Lb}) фононів від квазіімпульсу q за $b_1 = 1$ nm (a) та $b_1 = 5$ nm (b). На рисунках a_0 — величина постійної ґратки GaAs Fig. 2. Еперегіє of interface (Ω_{Lb}) = 1 = 22) and confined (Ω_{Lb} = Ω_{Lb}) shore as of functions of quasi-

Fig. 3. Energies of interface $(\Omega_{I\lambda}, \lambda = 1-32)$ and confined $(\Omega_{Lw}, \Omega_{Lb})$ phonons as functions of quasi-momentum q at $b_1 = 1$ nm (a) and $b_1 = 5$ nm (b), a_0 is a lattice constant of GaAs

Рис. 4. Залежності парціальних (Δ_n^L , Δ_n^I) та повних (Δ_n) зміщень від товщини бар'єра b_1 за T = 300 К Fig. 4. Partial (Δ_n^L , Δ_n^I) and complete (Δ_n) shifts as functions of barrier thickness b_1 at T = 300 К

Рис. 5. Залежності парціальних (γ_n^L , γ_n^I) та повних (γ_n) загасань від товщини бар'єра b_1 за T = 300 К Fig. 5. Partial (γ_n^L , γ_n^I) and complete (γ_n) decays as functions of barrier thickness b_1 at T = 300 К

Оскільки енергії (Ω_{Lj}) обмежених фононів є бездисперсійними і, згідно з теорією, збігаються з енергіями (Ω_{Lw} , Ω_{Lb}) повздовжніх фононів масивних аналогів кристалів ям та бар'єрів структури, то вони виявляються незалежними від товщини бар'єра b_1 .

Тепер розгляньмо особливості перенормування Lта І-фононами спектральних параметрів електронних станів. Оскільки розраховані залежності від товщини бар'єра b_1 зміщень $(\Delta_n^{\rm L}, \Delta_n^{\rm I})$ та загасань $(\gamma_n^{\rm L}, \gamma_n^{\rm I})$ за різних температур виявилися якісно подібними, тому на рис. 4 та рис. 5 наведені еволюції від b_1 парціальних $(\Delta_n^{\rm L}, \Delta_n^{\rm I} -$ рис. 4, а, b, d, e; $\gamma_n^{\rm L}, \gamma_n^{\rm I} -$ рис. 5, а, b, d, e) та повних ($\Delta_n = \Delta_n^{\rm L} + \Delta_n^{\rm I} -$ рис. 4, с, f; $\gamma_n = \gamma_n^{\rm L} + \gamma_n^{\rm I}$ – рис. 5, с, f) зміщень і загасань робочих станів електрона (n = 1, 2; 8, 10; рис. 4, а-с; рис. 5, а-с) та екстракторних станів "фононної драбинки" (n = 3-7, 9; рис. 4, d-f; рис. 5, d-f), зумовлених взаємодією зі всіма гілками L- та І-фононів лише за кімнатної температури T = 300 К.

Із рис. 4 та рис. 5 видно, що в розглянутому інтервалі зміни товщини бар'єра $1 \text{nm} \le b_1 \le 5 \text{ nm}$ взаємодія з

обома типами (L та I) фононів приводить до низькоенерґетичних зміщень та розширень електронних станів, причому для всіх *n* величини $\Delta_n^{\rm I}$ (рис. 4, b, e) та $\gamma_n^{\rm I}$ (рис. 5, b, e) на порядок більші за $\Delta_n^{\rm L}$ (рис. 4, a, d) та $\gamma_n^{\rm L}$ (рис. 5, a, d) відповідно. Така переважна роль І-фононів у перенормуванні станів електрона, згідно з фізичними міркуваннями, зумовлена малими товщинами ям та бар'єрів багатошарової структури каскаду. З цих рисунків також видно, що взаємодія лише з одним типом фононів (або з L, або з I) приводить до сумірних величин зміщень та загасань усіх станів (n = 1, ..., 10) каскаду.

Аналіз рис. 4 та рис. 5 показує, що для робочих станів (n = 1, 2; 8, 10) та станів "фононної драбинки" (n = 3-7, 9) залежності Δ_n^L, Δ_n^I та γ_n^L, γ_n^I від b_1 мають різний характер. Для станів n = 1, 2; 8, 10 (рис. 4, а, b, рис. 5, а, b) їхні властивості такі.

Зі збільшенням товщини бар'єра b_1 величини і зміщень (Δ_1^L , Δ_2^L — рис. 4, а; Δ_1^I , Δ_2^I — рис. 4, b), і загасань (γ_1^L , γ_2^L — рис. 5, а; γ_1^I , γ_2^I — рис. 5, b), зумовлені взаємодією нижньої пари робочих станів (n = 1, 2) з

L- та І-фононами, лише зближаються між собою через зменшення відстані між енергіями E_1 та E_2 цих станів (рис. 2).

Зміщення (Δ_8^L , Δ_{10}^L ; Δ_8^I , Δ_{10}^I) та загасання (γ_8^L , γ_{10}^L ; γ_8^I , γ_{10}^I) високоенерґетичних робочих станів (n = 8, 10) нелінійно залежать від товщини бар'єра b_1 . Розрахунки функцій зв'язку та масових операторів виявили, що міжрівневі електрон-фононні конфігураційні взаємодії приводять до виникнення екстремумів функцій Δ_n^L , Δ_n^I та γ_n^L , γ_n^I (n = 8, 10) за таких товщин b_1 , при яких різниця ($E_{nn'} = E_n - E_{n'}$) між енерґіями n-го та n'-го станів дорівнює енерґії повздовжнього фонона середовища-ями (Ω_{Lw}) або середовища-бар'єра (Ω_{Lb}). Величини екстремумів Δ_n^L , Δ_n^I та γ_n^L , γ_n^I зростають зі збільшенням перекриття хвильових функцій ψ_n та $\psi_{n'}$, і за виконання нерівності n > n' досягають більших значень. Також зазначимо, що через бездисперсійність енерґій двох гілок L-фононів і залежність від q багатогілкового спектра енергій І-фононів (рис. 3) поведінка функцій $\Delta_n^{\rm I}$, $\gamma_n^{\rm I}$ та $\Delta_n^{\rm L}$, $\gamma_n^{\rm L}$ в околах екстремумів виявляється різною.

Зміщення $\Delta_n^{\rm L}$, $\Delta_n^{\rm I}$ (рис. 4, d, e) та загасання $\gamma_n^{\rm L}$, $\gamma_n^{\rm I}$ (рис. 5, d, e) станів "фононної драбинки" (n = 3 - 7, 9) слабо змінюються зі зміною товщини бар'єра у двоямній активній зоні, навіть в околах тих значень b_1 , де виконуються рівності $E_{nn'} = \Omega_{\rm Lw}$ та $E_{nn'} = \Omega_{\rm Lb}$.

Отже, унаслідок домінантної ролі І-фононів у перенормуванні електронних станів на залежностях повних зміщень (Δ_n , рис. 4, с, f) та загасань (γ_n , рис. 5, с, f) від товщини бар'єра b_1 загалом проявляються головні особливості впливу І-фононів. Ієрархія ($\Delta_n^{\rm I} > \Delta_n^{\rm L}, \gamma_n^{\rm I} > \gamma_n^{\rm L}$) парціальних внесків взаємодії з L- та І-фононами в повні зміщення (Δ_n) та загасання (γ_n) електронних станів не порушується зі зміною температури.

Рис. 6. Залежності повних зміщень (Δ_n) та загасань (γ_n) від температури (T) за $b_1 = 3$ nm. Fig. 6. Complete shifts (Δ_n) and decays (γ_n) as functions of temperature (T) at $b_1 = 3$ nm

На рис. 6 при $b_1 = 3$ nm, що відповідає параметрам зразка A з експериментальної роботи [16], зображені залежності від температури (T) повних зміщень Δ_n та загасань γ_n робочих станів (n = 1, 2; 8, 10, рис. 6, а, b) та станів "фононної драбинки" (n = 3-7, 9, рис. 6, с, d). З рисунка видно, що з підвищенням температури величини $|\Delta_n|$ та γ_n всіх станів лише зростають.

Зауважимо, що в досліджуваному однофононному наближенні наявність або відсутність загасань $\gamma_n^{\rm L}$ та $\gamma_n^{\rm I}$ за T = 0 К реґулюється δ -функціями $\delta(E_n - E_{n'} - \Omega_{\rm Lj})$ та $\delta(E_n - E_{n'} - \Omega_{\rm I\lambda}(q))$ в уявній частині масових

операторів (17) та (18) відповідно. Тому, оскільки для трьох найнижчих станів (n = 1, 2, 3) за $n' = 1, \ldots, 11$ та за всіх енергій гілок L- та І-фононів виконуються нерівності $E_n < E_{n'} + \Omega_{Lj}$ та $E_n < E_{n'} + \Omega_{L\lambda}(q)$, то за T = 0 К взаємодія з фононами не викликає загасання цих станів $\gamma_1^L = \gamma_2^L = \gamma_3^L = 0, \gamma_1^I = \gamma_2^I = \gamma_3^I = 0$, а отже й повні загасання відсутні $\gamma_1 = \gamma_2 = \gamma_3 = 0$. Щодо високоенерґетичних станів $(n = 4, \ldots, 10)$, то навіть за T = 0 К їх загасання виникають за рахунок міжрівневих електрон-фононних взаємодій з тими низькоенерґетичними (n' < n) станами, які задовольняють умови $E_n - E_{n'} > \Omega_{Lj}$ та $E_n - E_{n'} > \Omega_{L\lambda}(q)$.

IV. ВИСНОВКИ

У моделі ефективних мас для електрона та діелектричного континууму для обмежених та інтерфейсних фононів розраховані електронні й фононні спектри та функції електрон-фононного зв'язку, що з перших принципів (без підгоночних параметрів) визначило гамільтоніан системи в зображенні чисел заповнення за всіма змінними. Методом температурних функцій Ґріна в однофононному наближенні досліджено перенормування електронного спектра взаємодією зі всіма гілками фононів у багатоямній наноструктурі каскаду широкосмугового ККД далекого ІЧ-діапазону.

Показано, що взаємодія з фононами в каскаді приводить до розширення та зміщення в ділянку менших енергій станів електрона, причому парціальні величини зміщень та загасань, зумовлені впливом інтерфейсних фононів, виявляються на порядок більшими, ніж під час взаємодії з обмеженими фононами. З підвищенням температури, згідно з експериментом [16, 17], зміщення та загасання перенормованих фононами станів електронів зростають.

Установлено, що за таких товщин бар'єра у двоямній активній зоні каскаду, за яких різниця між енергіями двох довільних станів (n та n') електрона дорівнює енергіям повздовжніх фононів середовищ-ям або середовищ-бар'єрів наноструктури, за умови суттєвого перекриття їхніх хвильових функцій, відбувається різка зміна величин зміщень та загасань обох станів. Для високоенергетичних (n > n') станів абсолютні величини екстремумів виявляються більші. Виявлений ефект може відігравати важливу роль під час функціонування ККД з багатоямною активною зоною, перенормовуючи як робочі стани приладу тоді, коли різниці їхніх енергій близькі до енергій поздовжніх фононів, так і стани "фононної драбинки" екстракторів.

- W. Lei, C. Jagadish, J. Appl. Phys. 104, 091101 (2008); https://doi.org/10.1063/1.3002408.
- [2] F. R. Giorgetta *et al.*, IEEE J. Quantum Electron. 45, 1039 (2009); https://doi.org/10.1109/JQE.2009.201 7929.
- M. Beeler, E. Trichas, E. Monroy, Semicond. Sci. Technol. 28, 074022 (2013); https://doi.org/10.1088/ 0268-1242/28/7/074022.
- [4] A. Delga, *Mid-infrared Optoelectronics* (Woodhead Publishing, 2020); https://doi.org/10.1016/B978-0-08-102709-7.00008-5.
- [5] L. Gendron *et al.*, Appl Phys Lett. **85**, 2824 (2004); ht tps://doi.org/10.1063/1.1781731.
- [6] L. Gendron, C. Koeniguer, V. Berger, X. Marcadet, Appl. Phys. Lett. 86, 121116 (2005); https://doi.or g/10.1063/1.1884257.
- [7] F. R. Giorgetta *et al.*, Appl. Phys. Lett. **91**, 111115 (2007); https://doi.org/10.1063/1.2784289.
- [8] D. Hofstetter et al., Appl. Phys. Lett. 93, 221106 (2008); https://doi.org/10.1063/1.3036897.
- [9] P. Reininger et al., Appl. Phys. Lett. 105, 091108 (2014); https://doi.org/10.1063/1.4894767.
- [10] B. Schwarz et al., ACS Photonics 4, 1225 (2017); https: //doi.org/10.1021/acsphotonics.7b00133.
- [11] J. Liu et al., Semicond. Sci. Technol. 33, 125016 (2018); https://doi.org/10.1088/1361-6641/aaebd4.
- [12] A. Vardi *et al.*, Appl. Phys. Lett. **92**, 011112 (2008); https://doi.org/10.1063/1.2830704.
- [13] A. Vardi et al., Appl. Phys. Lett. 93, 193509 (2008); https://doi.org/10.1063/1.3021376.
- [14] S. Sakr et al., Appl. Phys. Lett. 100, 181103 (2012); ht tps://doi.org/10.1063/1.4707904.
- [15] S. Sakr et al., Appl. Phys. Lett. 102, 011135 (2013); ht tps://doi.org/10.1063/1.4775374.
- [16] L. Li et al., J Phys. D: Appl. Phys. 51, 37LT01 (2018); https://doi.org/10.1088/1361-6463/aad752.
- [17] X. Zhou, N. Li, W. Lu, Chin. Phys. B 28, 027801 (2019); https://doi.org/10.1088/1674-1056/28/2/027801.
- [18] R. Terazzi, J. Faist, New J. Phys. 12, 033045 (2010);

https://doi.org/10.1088/1367-2630/12/3/033045.

- [19] A. Delga et al., Appl Phys Lett. 99, 252106 (2011); ht tps://doi.org/10.1063/1.3671328.
- [20] M. V. Tkach, Ju. O. Seti, V. O. Matijek, I. V. Boyko, J. Phys. Stud. 16, 4701 (2012); https://doi.org/10.3 0970/jps.16.4701.
- [21] J. Zhu, S. L. Ban, S. H. Ha, Superlattices Microstruct. 51, 471 (2012); https://doi.org/10.1016/j.spmi.201 2.01.010.
- [22] A. Bhouri, A. Rached, J.-L. Lazzari, J. Phys. D: Appl. Phys. 48, 385102 (2015); https://doi.org/10.1088/00 22-3727/48/38/385102.
- [23] M. Tkach, Ju. Seti, O. Voitsekhivska, Superlattices Microstruct. 109, 905-914 (2017); https://doi.org/10.1 016/j.spmi.2017.06.013.
- [24] X. Gao, D. Botez, I. Knezevic, J. Appl. Phys. 103, 073101 (2008); https://doi.org/10.1063/1.2899963.
- [25] J. G. Zhu, S. L. Ban, Eur. Phys. J. B 85, 140 (2012); https://doi.org/10.1140/epjb/e2012-20981-9.
- [26] C. Tang, Y. Lan, M. Dutta, M. A. Stroscio, J. Shi, IEEE J. Quantum Electron. 52, 4400108 (2016); https://do i.org/10.1109/JQE.2016.2607704.
- [27] Z. Gu, S. L. Ban, D. D. Jiang, Y. Qu, J. Appl. Phys. 121, 035703 (2017); https://doi.org/10.1063/1.4974448.
- [28] N. Mori, T. Ando, Phys. Rev. B 40, 6175 (1989); https: //doi.org/10.1103/PhysRevB.40.6175.
- [29] M. A. Stroscio, M. Dutta, *Phonons in nanostructures* (Cambridge University Press, 2001).
- [30] D. F. Nelson, R. C. Miller, D. A. Kleinman, Phys. Rev. B 35, 7770 (1987); https://doi.org/10.1103/PhysRevB .35.7770.
- [31] P. Harrison, A. Valavanis, Quantum Wells, Wires and Dots: Theoretical and Computational Physics of Semiconductor Nanostructures, 4th ed. (Wiley, 2016).
- [32] М. В. Ткач, Ю. О. Сеті, О. М. Войцехівська, Квазічастинки у наносистемах. Квантові точки, дроти і плівки (Книги-XXI, Чернівці,2015).
- [33] А. А. Абрикосов, Л. П. Горьков, И. Е. Дзялошинский, Методы квантовой теории поля в статистической

физике, 2-е изд. (Добросвет, Москва, 1998). [34] G. D. Mahan, Many-Particle Physics: Physics of solids and liquids, 3rd ed. (Springer, 2000); https://doi.org/ 10.1007/978-1-4757-5714-9. [35] N. V. Tkach, Yu. A. Seti, Fiz. Nizk. Temp. 35, 710 (2009); Low Temp. Phys. 35, 556 (2009); https://doi.org/10.1063/1.3170931.

PECULIARITIES OF ELECTRON SPECTRUM RENORMALIZED BY OPTICAL PHONONS IN THE CASCADE OF QUANTUM CASCADE DETECTOR

Ju. Seti, E. Vereshko, M. Tĸach, O. Voitsekhivska

Yuriy Fedkovych Chernivtsi National University, 2, Kotsyubynsky St., UA-58012, Chernivtsi, Ukraine

In the model of position-dependent effective mass of an electron and isotropic dielectric continuum for confined and interface phonons, the Hamiltonian of the electron-phonon system is obtained in the representation of the second quantization over all variables. Using it, the spectral characteristics of the electron renormalized due to the interaction with all phonon modes in the cascade of a broadband quantum cascade detector operating in the far infrared range are calculated in one-phonon approximation using the method of Green's functions. The influence of confined and interface phonons both on the electron operating states and the states of the "phonon ladder" in the nanodevice cascade is studied depending on the width of the potential barrier in the double-well active region at cryogenic and room temperature. It is established that regardless of the geometric configuration of the active region, the interaction with phonons leads to a low-energy shift and the decay of the electron states, whose magnitudes increase at higher temperatures. It is revealed that interface phonons produce an order of magnitude stronger effect on all electronic states of the cascade than that of confined phonons. Since, the features caused by interface phonons are mainly manifested in the complete shifts and decays. With an increase in temperature, according to the experiment, the shifts and decays of the states, renormalized due to the interaction with phonons, only increase. It is shown that by varying the width of the potential barrier in the double-well active region a sharp increase in both characteristics — the shift and the decay of high-energy electron states - can be achieved. This is provided by the condition that the difference between the energies of two-electron states is equal to the energy of longitudinal phonons of the materials of nanostructure wells or barriers. Since the detected effect is caused by the inter-level electron-phonon configurational interaction, the values of the extremes of the shifts and decays increase if the wave functions of both states overlap more and reach larger magnitudes for high-energy states. This effect will play an important role in the functioning of quantum cascade detectors with a multi-well active region, renormalizing both the operating states of the device, when their energy differences are close to the energies of longitudinal phonons, and the state of the "phonon ladder" of extractors.

Key words: nanosystem, electron, phonon, quantum cascade detector, Green's function