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We present and analyse the performance of different combinations of four higher-order numerical
integrators and up to nine interpolation schemes applied to the problem involving the Sun and four
Gas-giants (outer planets), namely, Jupiter, Saturn, Uranus, and Neptune. The Hermite interpolati-
on schemes obtained by one, two, and three time-step and interpolants for ODEX2 and ERKN
integrators are considered in this paper. The interpolants are a special example of an interpolati-
on scheme, which produce an approximation that is continuous across one step and across the
complete interval of integration. The interpolants are quite expensive in comparison with the other
interpolation schemes. Therefore, one of the objectives of this paper is to investigate the possibilities
of replacing the interpolants of certain integrators by other interpolation schemes, perhaps at a cost
of a little bit of accuracy. The experiments are performed to examine the error growth in the posi-
tions, velocities, and relative error in energy and angular momentum using different combinations
of integrators and interpolation schemes over a long interval of integration, as long as 100 million
years for the Jovian problem with local error tolerances ranging from 1076 to 107,
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I. OVERVIEW

The interpolation schemes play a key role in N-
body simulations, in-particular, when detecting close-
encounters between a massive body and a test particle
in the Solar System dynamics. It is possible that a close-
encounter occurs within the time-step and not at the end
points. Such a close-encounter would not be detected if
we only have numerical approximations at the end poi-
nts. One way of detecting such close-encounters is to
generate numerical approximations within the integrati-
on time-step by using a far smaller time-step when the
test particle is near the massive body compared wi-
th when it is far from the massive body. In practice,
this approach would be inefficient because all bodies,
including those that are not undergoing close-encounters,
would be integrated with the smaller time-step, resulti-
ng in a possibly tremendous increase in CPU-time. Thus,
an alternative approach is needed to avoid this ineffici-
ency. The numerical approximation at the mesh points
may be extended to a continuous approximation, whi-
ch provides the numerical solution at any point ¢, for ¢
within the time-step interval. Large numbers of numeri-
cal integrators and associated interpolation schemes for
performing N-body simulations have been developed and
implemented; see, for example, [9, 18-22].

In the next section, we illustrate the physical
formulation of the Jovian problem, integrators and
interpolation schemes applied to the Jovian problem,
different types of errors, estimation of the maximum
global error by sampling the norm with different sets
of data points. In Section III, we present continuous
approximations of variable-step-size integrators, and a
schematic that presents the classification of the errors
as a local segment of the numerical solution. Numerical
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testing is done in Section IV involving comparisons of
combinations of different integrators and interpolation
schemes, and overall summary is presented in Section V.
All computer programs are written in FORTRAN and
we have used Matlab to analyse the results. The graphs
are smoothed with the Matlab filter command.

II. BACKGROUND

The Jovian problem models the orbital motion of the
Sun and four Gas giants (outer planets), namely, Jupi-
ter, Saturn, Uranus, and Neptune, interacting with one
another through Newtonian forces [23]. The shortest
orbital period for the Jovian problem is 4331 days (Jupi-
ter). The Jovian planets collectively drive much of the
dynamics of our Solar System. Therefore, the Jovian
problem is frequently used in numerical approximati-
ons, inparticular, when simulations are performed over
a long interval of integration. These longterm numerical
simulations provided more insight into the Solar System
dynamics, which went further than that given by analytic
theories. Let r; = [z4,vs,2]%,i = 1,...,5, denote the
position of the i*" body of the Jovian problem in a three-
dimensional Cartesian coordinate system with the origin
at the barycentre of the bodies. The equations of motion
for the i*" body of the Jovian problem can be written as

pilri®) —rit)

i) —rog b W

j=1.j#i

where ||.||2 is the Ly-norm, and x; denotes the gravitati-
onal constant G times the mass m; of the 7 body, i.e.,
w; = Gmy, distance is expressed in astronomical units,
time in Earth days, whereas the mass m; in Solar mass.
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For each body of the Jovian problem we have a 2"4-order
differential equation for the z-, y-, and z-components, gi-
ving us 15 2%9-order differential equations in total. For
efficiency purposes, we use the symmetry of interactions
for evaluating the acceleration for the Jovian problem. If
we consider the individual terms in the summation, then
it can be observed that

(rj (@) = ri(1)) —(rit) —75(t))
lIrj (@) =rI3 s () =713

Once this term for r; is obtained, we can easily update
the acceleration for the 2°¢ body by using symmetry. It
has been observed that using symmetry, the subroutine
for evaluating the force term reduces to approximately
half of the CPU-time.

Explicit Runge-Kutta—Nystréom (ERKN) methods for
the numerical approximation of 2"%-order differential
equations were proposed by E. J. Nystrom in 1925 [12].
ERKN methods reduce the computational cost consi-
derably, compared to explicit Runge-Kutta (ERK)
methods applied to the corresponding equivalent system
of first-order differential equations. For example, an
order-five ERKN method requires only four function
evaluations per integration time-step, whereas an ERK
method of the same order requires at least six functi-
on evaluations [10]. The efficiency of an ERKN method
depends on the technique for controlling the error in the
numerical solutions. An adaptive step-size technique is
one of the possible options of controlling the error that
permit control of the estimated local error. A pair of di-
fferent orders formulae is implemented in such a manner
that the function evaluations of both methods are identi-
cal. Usually, the numerical approximation is performed
by a higher-order method and the error is obtained by the
lower-order method to gain maximum efficiency. Here,
we use two ERKN integrators: a 9-stage ERKN689, 6—
8 FSAL pair and a 17-stage ERKN101217, 10-12 non-
FSAL pair [2].

Extrapolation provides a strong means of accelerati-
ng the convergence of solutions that arise from discreti-
zation methods, and also have strong connections wi-
th, for example, projection methods, continued functi-
ons and Padé approximations. For the direct numeri-
cal approximations of 2"d-order systems of differential
equations, Hairer et al. [10] developed an extrapolation
code ODEX2. This code is based on the explicit midpoi-
nt rule along with order selection and a step size control
technique. The extrapolation code ODEX2 is efficient for
all tolerances, in-particular for high precision.

Stormer’s methods are an important class of numerical
methods for the numerical approximation of systems of
20d_order differential equations [14]. Stérmer’s methods
have long been implemented for long-term numerical si-
mulations of the Solar System dynamics [9]. Grazier [9]
suggested the 13'M-order, fixed step-size Stérmer method
that uses backward differences in summed form, summi-
ng from the highest to the lowest differences. For the
Jovian problem, the numerical testing in [8] depicts that
the error in energy and the phase error grow as t'/2
and t3/2, respectively, to within numerical uncertainty
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when the step size is approximately 4 days of Jupiter’s
orbital period. This particular selection of the step-size
guarantees that the local truncation error is well below
machine precision. In this work, we use the order-13, fi-
xed step-size Stérmer method and associate to it as S-13
integrator.

For the continuous approximation of the Jovian
problem, the interpolation schemes used in this paper
are: one-step (cubic and quintic Hermite interpolation
schemes), two-step, and three-step Hermite interpolati-
on schemes. The cubic Hermite interpolation polynomial
is of degree 3, whereas the quintic, two-step, and three-
step are of degrees 5, 8, and 11, respectively. For one
time-step, the cubic Hermite interpolation polynomial
interpolates the data (¢,—;, yn—;) and (t,—s,y,_;) at ti-
me t,_;, for i =1 and 0 and can be expressed as

Pi(t) = (71— 1)2(27 + Dyp_1 + (7 — 1)27'Hy;l_1
+ 723 =27y, + 73(7 — 1)Hy, ,

where, H = t, — t,,—1 and 7 = (t — t,,—1)/H. Since the
values of y and y' are interpolated at both ends of each
time-step, the piecewise defined approximation obtained
from the cubic polynomial is continuous and has a conti-
nuous first derivative.

The quintic polynomial also interpolates the data
involving position, velocity, and acceleration at time
tn_i, % = 1,0. The values of y, ¥/, and y” are interpolated
at both ends of each time-step. Therefore, the piecewi-
se defined approximation obtained from the quintic
polynomial is continuous and has continuous first- and
second-derivatives. Similarly, the two-step polynomial
interpolates the data involving position, velocity, and
acceleration at time t¢,_;, ¢ = 2,1,0; whereas, the
three-step interpolation polynomial interpolates the data
involving position, velocity, and acceleration at time
tn—i, i = 3,2,1,0. For comprehensive details of the one-
step, two-step, and three-step interpolation schemes, we
refer to [17]. Solution interpolants for ODEX2 integrator
and ERKN integrators are discussed in Sections III A and
III B, respectively.

Now, we define different types of errors used in this
paper. We use the notation yiue(t) to denote the true
solution and yn,m(t) to denote the approximate solution.
The difference is monitored time-wise by considering the
global error in y as

Ynum (t) - ytrue(t)- (2)

The norm of the global error in y at time ¢ is then

[|yum (£) = Yerue (1)l |2- (3)

The calculation of the global error is discussed later. A
large number of integrators, for example, Runge-Kutta—
Nystrom [12], and Stormer [14] can be used to find
Ynum () for ¢ > 0. This leads to numerical solutions
Yn = Ynum (tn) and y!, = yl .. (tn) at times ¢, = to + nh,
n = 1,2,..., where h can depend on n. The approxi-
mation over the continuous time interval can then be
computed using (local) interpolation.
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From one time-step to the next, the local problem is
solved, which is defined as

UZ = f(t7un)7 Un(tnfl) = Yn—1,
(4)

Up(tn—1) = Yp_1, t € [tn_1,tn],

where u, (t) is the true local solution on the n'" interval.
The initial conditions y,—; and y,,_; are the values of
the approximate solution at the end of the (n— 1)t step.
Hence, for the local problem, the DEs are the same as for
the original problem, while the initial conditions depend
upon the numerically approximated solution. Because,
in general, the approximation y,_1 is not equal to the
true solution Yiyue(tn—1), there is a difference between
the error obtained in this local step and the global error.
The norm of the local error is defined as

un(t)”Qa (5)

where t € [t,—1,t,]. In general, the global error cannot
be calculated because the true solution is not known.
The estimated global error in the position over each time-
step, n, is defined in terms of an accurate numerical
solution (computed in quadruple precision), yyet(t), and
an underlying polynomial approximation is introduced
at each step, P,(¢). We then estimate global error for
t € [tn—1,tn] by evaluating P,(t) — yret(t) at k evenly
spaced sample points over the step. A more detailed
description of yref(t), k, P, (t), and the definition of the
estimated global error in the position is presented later
in this section.

The global error in the position for all ¢t € [to,ty],
where t; is the pre-specified final value of ¢ in the
integration, is more difficult to define and estimate,
because we need a continuous approximation to y(t),
and not just the discrete values y1,ys, . ... We obtain the
continuous approximation by first forming a polynomi-
al P,(t) that approximates the local solution on the
interval [t,_1,¢,]. The numerical approximation is then
the piecewise-defined function

||ynum(t) -

Pi(t), to<t<ty,
PZ(t)7 t1§t§t27

Youm(t) = ¢
Pn(t)a tnfl S t S tn7

where we have assumed P,_1(tp—1) = Pn(tn—1), an
assumption that holds throughout the paper. The
corresponding definition of y/ .. (t) is

Pi(t), to<t<ty,

Py(t), t1 <t<ty,
Youm () = 7

Pn(t)a th—1 <t < tnv

where P, (t) not necessarily is the derivative of P, (t).
The polynomials P, (t) and P,(t) are commonly called
local interpolants and can be of many types. The main
requirements of the local interpolants are that they be
sufficiently accurate and have sufficient continuity.

We write the norm of the estimated global error in the
position at time ¢ as

Er(t) = |[ynum () — Yret () ]]2, (6)

and the norm of the estimated end-point global error as

E; ena (tf) = ||ynum (tf) - yref(tf)H% (7)

where t¢ is the time at the end-point. The maximum
of the norm of the estimated global error in position,
loosely referred to as the maximum global error, is defi-
ned as the maximum norm of E, ,.x(t) evaluated at k
evenly spaced sample points over each integration time-
step. That is, we evaluate the maximum global error by
introducing an accurate approximation yt(t) to y(t),
sampling ||Ynum(t) — Yret(t)||2 over each time-step, and
using the maximum over all sampled values to be the
estimate of the maximum of ||ynum(t) — y(t)|]2-

In way a similar to that for the position, the norm of the
estimated global error in velocity at time ¢ and the maxi-
mum of this norm over the interval [to, ¢;] are defined as

Ev(t) = Hy;lum(t) - yllrcf(t)HQv

E’U,max(t) = telﬁa}t( ]||y:1um (t) - yief(t)HQv
0,tf

where y, ... (t) and y/ (t) are vectors at any time t of
the derivatives to the numerical and reference solutions,
respectively.

We store the pieces of information, like positions and
times, in separate files. Meanwhile, in a post-processing
program, we estimate the maximum global error by
sampling the norm at k£ evenly spaced data points on
every sub-interval [t,_1,t,] with respect to the reference
solution, which we obtain at these stored values of ti-
me by forcing the integrator to hit the sample points,
and then taking the maximum of these norms. To see
the effect of different values of k£ on the estimated maxi-
mum global error in position, we performed experiments
using the combination of ERKN101217 and the 29-
stage interpolant, which are described in Section TIT A.
The integration was performed over one million years
of integration for the Jovian problem with local error
tolerances 10798, 10710, 10712, 10~!*, and 10716. We
found that k£ = 10 led to an estimated maximum global
error that was sufficiently accurate for our work; this is
illustrated by the results in Table 1. The rows labelled
k = 50 and k = 100 list the percentage changes in the
estimated maximum global error when compared with
the values in row labelled k& = 10.

We observe from Table 1 that the data for TOL =
107% shows a percentage change of zero. In this case,
the estimated maximum global error occurs at t¢ and
this is possible with N-body simulations; if this occurs,
the percentage difference between different values in k
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would be zero. We repeated the same set of experi-
ments with other combinations. For example, when using
the integrator ODEX2 with its interpolant, described in
Section IIIB, an increase of k from 10 to 100 changed

the estimated maximum global error by not more than
1%. Throughout the remainder of this paper, all maxi-
mum global errors are estimated by sampling at 10 evenly
spaced data points at every time-step.

TOL 10798 1071 10712 107 1071¢
k=10 |4.70x1071| 1.63x1073 | 4.82x107° | 2.42x107° | 8.80x107°
k=50 0% [3.4x1072 %|3.9x1072 %|1.0x1072 %(5.2x107° %
E=100] 0% |3.5x107% %|3.9x107% %|1.0x1072 %|4.2x107° %

Table 1. The values of estimated maximum global error using ERKN101217 with 29-stage interpolant obtained with different
values of k over one million years of integration for the Jovian problem with local error tolerances 107°, 1071°, 1072, 10714,
and 107!, The row labelled k& = 10 shows errors, whereas the rows labelled k& = 50 and k = 100 list the percentage changes.

Usually, physical systems have conserved quantities,
such as, total energy, total angular momentum, position
and velocity of the center of mass of the bodies. Normally,
these physical quantities are not conserved exactly by the
numerical approximation and this deviation provides an
insight about the accuracy of the numerical approximati-
on. The total energy for a system of N bodies interacting
with one another through Newtonian forces is defined as

where G is the gravitational constant, m; the mass of
the i*® body, v; yum(t) the numerical approximation to
velocity of the i*" body (components 3i — 2 to 3i of
Yo (1), a0 dig () = |75 mn(t) — 5.m (8)]2 35 the di-
stance between the i*® and j* bodies. Here, 7; yum(t)
is formed by the components 3i — 2 to 3i of ynum(t) and
7jnum (t) by the components 35 —2 to 35 of ynum(t), which
represent the numerical approximations to the positions
of the i*® and j* bodies, respectively. The relative error
in energy is defined as

Hy— H(t
w510

where Hj is the total energy at ¢t = ty. The value of
@ = Gm is usually known more accurately than the value
of m. Therefore, we use

Hoa(f) = ‘GH—GH@)’

GHy

The total angular momentum is defined as

N
L(t) = Z miri,num(t) X Vi,num (t)
i=1

Rerr (t) =

We define the relative error of the angular momentum as

[[Lo — L(t)]|2
[[Loll2

where Lg is the angular momentum at the initial time
t =1p.-

Lrel<t) =

III. CONTINUOUS APPROXIMATIONS

The well-known one-step methods for the numeri-
cal approximation of a system of ordinary differential
equations are normally formulated such that numerical
approximations are produced on mesh points g < t1 <
ta < ... < tg, which are determined by the step-size
selection strategy of these numerical methods. As soon as
a numerical approximation of yi e (t) is required where ¢
is not at one of the mesh points, the numerical approxi-
mation must be extended to a continuous approximati-
on. Pioneering work on continuous approximations for
Runge-Kutta methods has appeared in the literature
[11], and also for explicit methods [13]. This work was
extended by others; see, for example, [1, 3-6, 10, 15, 16].

Figure 1 shows a local segment of the numerical soluti-
on Ynum over the time interval [¢,_1,¢,]. This solution is
obtained by interpolation over the data calculated from
the local problem (4). The local solution to (4) has a local
error that is 0 at t = ¢,,_1. In contrast, the global error is
not 0 for any ¢ € [t,—1,t,]. There are two contributions
to the global error. First, the interpolation polynomi-
al is not formed using true data. Rather, it is using an
approximation at the end of the time-step. Second, even
if it is true data then there is an interpolation error at the
intermediate times ¢t € [t,—1,t,]. If we denote the esti-
mated global error in an interpolated value on [t,_1,1,]
by Eyint(t), then the relative error with respect to the
estimated end-point global error is

Estimated global error in an interpolated value on [t,—1, ;)

Er,int (t)
max - /. N -
tE[tn—1,tn] Er,cnd (tn)

Estimated global error in the numerical solution at ¢,

If the integration error dominates the interpolation error, then the relative error R, (t) tends to 1 as t — oo.
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true soluti:on Yirue(t)

Eloc (t)

tn—l tn

Fig. 1. Classification of the errors when using a numerical integrator together with an interpolation polynomial

A. Continuous approximation with embedded
RKN methods

Dormand and Prince [3] and then Baker et al. [1]
constructed a continuous approximation for embedded
RKN pairs, where a third RKN process of order p* is
used for the numerical approximations of y(t,,—144) and
Y (tn—1+a) With « typically in (0, 1]. These approximati-
ons are usually called interpolants and are denoted by
y;—l—&-a and y;z*—1+oc:

*

S
y:;,pra = Yn—1+ ahnfly;hl + O‘Zhngl Z b; (O‘)k;‘k’

i=1
. (9)
= Yoy + 1 Y b ()R]
i=1

Ix
ynflJra

k;k - f(tnfl + C?ahnfh Yn—1 + Czahnfly:lfl

i—1

212 k7% . *

+ a“hi_, E aj;ky), i=1,...,5".
j=1

If s* = s, then no extra function evaluations are requi-
red for yy ., and y," |, . As before, the prime in b}* is

J

purely notational and does not involve the differentiati-
on operator. The approximation to ynum(t) is continuous
and has continuous first- and second-derivatives, because
it interpolates y, ¥', and y” at both ends of each time-
step. For ERKN methods, the derivative interpolants can
be derived separately, and not as the derivative to the
solution interpolants themselves.

For FRKN101217 integrator, we have used 23-stage,
26-stage, and 29-stage interpolants with p* = 10, p* =
11, and p* = 12, respectively. The coefficients for these
interpolants are freely available on-line [1]. For ERKN689
integrator, we have used a 12-stage interpolant with
p* = 8. Note that the coefficients for the interpolant for
y and 3y’ of ERKN689 integrator are provided (private
communication) by P. W. Sharp.

B. Continuous approximation with ODEX2

The ODEX2 integrator has a solution interpolant.
We added a derivative interpolant by differentiating the
solution interpolant. The solution interpolant provides
an approximation to the i**-~component of the solution at
time ¢. The polynomial P, («) for the solution interpolant
can be written as

Pu(a) = yu) + ayortiy + a(l — @)yenri + o?(1— Q)Yi3M+i) + (1 - a)29(4M+z')

+ a*(1 = @)’ysagi) + (@ —a?)? Z
=0

(o)
1 Y(M (5+5)+i)

where aq = (t —t,—1)/h — 0.5 and M is the number of ordinary differential equations. The degree of P,(«) is p+ 4,
with —1 < p < 2k, where k is related to the integration order.
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The polynomial used for the continuous approximation of the derivative provides an approximation to the 7*'-
component of the derivative at time ¢. The order of this derivative interpolant is one less than P,(a) and can be

written as

1

Pi(a) = < |yt + (1 = 20)yenri + (20 — 302)ysar + (1 — @) (3 = 5a)yan+4)

h
k (a )
+ a(l — @)*(2 = 5a)ysarti) + (a —a?)? (j 1—

j=1

IV. NUMERICAL TESTING FOR LONG-TERM
SIMULATIONS

First of all, we discuss error growth in position
and velocity by using the appropriate combinations
integrators: ODEX2, ERKN689, and ERKN101217, and
interpolation schemes over one million years for the Jovi-
an problem.

We have obtained the reference solution in quadruple-
precision using the combination of ERKN101217
integrator and the 29-stage interpolant with TOL =
10718, To quantify this particular choice for the reference
solution, we also integrated the Jovian problem usi-
ng the combination of FRKN101217 and the 29-stage
interpolant with TOL = 10~29. It has been observed that
the maximum difference between positions and velocities
of these two solutions is no more than 4.6 x 10713, It has
also been observed that in most cases, the maximum of
the global error occurs at the end-point of the integrati-
on. We also integrated the Jovian problem in quadruple-
precision using the combination of ERKN689 and the
12-stage interpolant with the tolerance TOL = 10718
and observed that the maximum difference with the
solution for the combination of FRKN101217 and the
29-stage interpolant with TOL = 107!® is no more
than 5.1 x 107'3. This suggests that the combinati-
on of FRKN101217 and the 29-stage interpolant with
TOL = 107'8 is fairly accurate to acquire the reference
solution.

We have performed numerical experiments to observe
the unweighted Lo-norm of the estimated maximum
global error in the position as a function of tolerance wi-
th three different combination; ODEX2 and its built-in
interpolant, FRKN689 and the 12-stage interpolant, and
ERKN101217 and the 29-stage interpolant over one mi-
llion years for the Jovian problem. It has been observed
that the maximum global error obtained with the combi-
nation of ODEX2 and its built-in interpolant is ranging
from 8.0 x 107° to 1.1 x 102. The best observed accuracy
8.0 x 1075 is obtained with TOL = 1076 and the mini-
mum accuracy 1.1 x 102 with TOL = 10~%. The combi-
nation of FRKN101217 and the 29-stage interpolant is
an accuracy that ranges from 8.8x107 t0 4.7x10~!. The
best observed accuracy is obtained with TOL = 10716
and the minimum accuracy with TOL = 10~%. Simi-
larly, the combination of FRKN689 and the 12-stage
interpolant has an accuracy ranging from 9.8 x 10~7 to
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j—1 (ap)?
G = DY G+ +3(a—a’)?(1-20)) T YM G+ |-

k
J=0 J

(

4.4 x 102, with the best observed accuracy at TOL =
10*(1);l and the minimum accuracy is obtained at TOL =
107°°.

To test the analysis that led to the definition of the
error R, (8), we integrate the Jovian problem over one
million years using all the integrators and interpolation
schemes described so far. On every accepted integrati-
on time-step, we obtain the Lo-norm of H. and L.q
at 10 evenly spaced values of time. The maximum of
these 10 error values is taken as the maximum error
(care has been taken to make efficient use of storage)
on the integration time-step. The S-13 integrator uses
a fixed step-size of 4 days, and we set the tolerances
to 10716, 107!, and 1070 for ODEX2, ERKN101217,
and ERKNG689, respectively (the variation of tolerance
is subject to achieving a maximum global error of 1074
with variable-step-size integrators).

Stormer

10

Ratio of error in energy

10 10 10" 10 10
Time in years

Fig. 2. The ratio of the maximum H,. at the interior points

to the end-point (of a step) Hye for the 5-13 integrator usi-

ng cubic and quintic Hermite interpolations over one million
years for the Jovian problem

Figure 2 depicts the ratio of the maximum H,, at
the interior points to the end-point H,, for the S-13
integrator using cubic and quintic interpolations. We
observe from the plot for the cubic Hermite interpolati-
on polynomial that R, appears bounded from above
by 5 x 10* for small ¢ and then gradually decreases to
no more than 6 x 10? at 10° years. The large value
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of Re, may be due to the fact that the interpolation
polynomial used for the velocity components is only of
order 2. The plot for the quintic Hermite interpolati-
on polynomial shows that the relative error in energy
is approximately 1 for the entire interval of integration.
This verifies the result of Grazier et al. [7] that, when
the time-step is chosen so that the S-13 methods satisfy
Brouwer’s law, the one-step quintic Hermite interpolati-
on is sufficiently accurate. A similar behaviour with cubic
and quintic polynomials is observed for the relative error
in angular momentum.

10 ERKN101217
10 T

Ratio of error in energy

29-stage

23-stage 26_stage

10* 10
Time in years

Fig. 3. The ratio of the maximum H,. at the interior points

to the end-point He for ERKN101217 using cubic, quintic,

2-step, 3-step interpolations, and 23-stage, 26-stage, 29-stage

interpolants over one million years of integration for the Jovi-
an problem with local error tolerance of 10711

Figure 3 represents the ratio of the maximum H,. at
the interior points to the end-point H,. for ERKN101217
using cubic, quintic, 2-step and 3-step interpolations [17],
which are of degrees 3, 5, 8, and 11, respectively; and 3
interpolants of 23, 26, and 29 stages, having orders 10,
11, and 12, respectively. We observe for the low-order
interpolation schemes, i.e., cubic, quintic, and two-step,
that R, in energy does not decrease to 1 at the end of
108 years. With all three interpolants the R.,, is approxi-
mately 1 for the entire interval of integration. We also
observe that the 3-step interpolation polynomial achieves
the same accuracy (with R, in energy approximately 1)
at the end of the integration, although initially it is domi-
nated by the interpolation error. Therefore, until about
10 years, it is better to use one of the interpolants if
the smallest error is required. However, if the required
integration time is large enough, the integration error
starts dominating and then it is better to switch to a
3-step interpolation polynomial because this is going to
save on CPU-time and does not sacrifice accuracy.

We also performed experiments measuring R, for
the energy and angular momentum for FRKN689 using
the cubic, quintic, and two-step Hermite interpolation
schemes, and together with its 12-stage interpolant; and
for ODEX2 using cubic, quintic, two-step and three-step

interpolations, and together with the interpolant. For
ERKN689, the two-step interpolation scheme and the
12-stage interpolant achieved a ratio of approximately
1. For ODEX2, the only continuous approximation that
achieved the same accuracy was the interpolant and its
derivative that comes with ODEX2.

To observe the behaviour of conserved quantities
like energy and angular momentum using different
interpolation schemes with different integrators, we
performed many experiments. All these experiments
were done for the Jovian problem over up to 10® years.
One of the strong observations about all of these experi-
ments that applies except when using the quintic Hermi-
te interpolation scheme with the S-12 integrator is as
follows: if a low-order interpolation scheme is used with
a high-order integrator then the interpolation error at a
particular time will dominate the integration error and
the total error will not increase with ¢. This is because the
interpolation error does not grow with time. For example,
if a 12-th order integrator is used with cubic Hermite
interpolation, then the total error is given by

Total error = Ct3/2h'? + DR
~ Dh*, C, D = Constant,

provided ¢ is not too large and C is not significantly
larger than D. On the other hand, if the interpolation
polynomial and the integrator are of the same order, then
the total error will increase with the passage of time.

Max. relative error in energy

5 20 50 100 250 500
Step-size variation

Fig. 4. The maximum H,. for the cubic, quintic, 2-step, and
3-step interpolations with different step-size sequences over
one period of Jupiter for the Jovian problem

We now want to observe the effect of the step-size
on H,e and L., while performing long-term simulati-
ons using different interpolation schemes with different
integrators. Therefore, we set up an experiment to
anticipate the behaviour of this relative error; see Fi-
gure 4. This experiment provides an insight about the
interpolation error in energy and angular momentum.
We integrate the Jovian problem using the ERKN101217
integrator over a time interval that equals one period of
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Jupiter. We obtain a reference solution by integrating in
quadruple precision with TOL = 107! to eliminate the
possible effect of integration error. We run six experi-
ments, where we record position, velocity and accelerati-
on at the end of every 5, 20, 50, 100, 250, and 500
days, by forcing the integrator to hit these time-points.
The period of Jupiter is not divisible by 5, 10, 50, 100,
250, and 500 and hence the last step of each integrati-
on was shorter than the previous steps. The selection
of such step-size sequences is done in accordance wi-
th the average step-sizes taken by different integrators
when integrating the Jovian problem. For example, over
105 years, S-13 takes a time-step of 4 days, while on
average, over the same time interval, ERKN689 with
TOL = 101 | ERKN101217 with TOL = 10~'' and
ODEX?2 with TOL = 10716 take approximately 65, 290
and 260 days, respectively.

ERKN101217
—4
’ W oy
107° T /4 |
T A Y
b -
%107 w// |
[9)
g R R A e s e
210 an P e 7
§ — A T “,/\,,N\M-‘N\MVW""M
$ 1072} / k;,f' |
'.; 2-step _
© /
4 -
10 r 3-step / / |
-16
10 ¢ 26-stage 29-stage |
23-stage
-18
10 . ‘ ‘
10’ 10° 10 10° 10°

Time in years

Fig. 5. The Hyel for ERKN101217 using cubic, quintic, 2-

step, 3-step interpolations, and 23-stage, 26-stage, 29-stage

interpolants over one million years of integration for the Jovi-
an problem with the local error tolerance of 10!

For different step-size sequences, we use appropriate
interpolation schemes; for example, as discussed earlier,
the 3-step interpolation scheme needs not to be used for
the S-13 integrator with a step-size of 4 days, since the
quintic Hermite interpolation is sufficient. Then on each
step-size, we use interpolation and sample the solution at
10 equally-spaced data points, from which we determine
the local maxima for H,. and L. For each interpolation
scheme, we observe that there is a considerable variati-
on in H.q and L, as a function of the step-size. For
example, the biggest variation of approximately 9 orders
of magnitude for H,, was observed with the quintic
Hermite interpolation scheme over the range of 5 to 500
days step-size sequences. This particular example has a
reasonably good agreement with the expected difference
of approximately 10 orders of magnitude, because the
expression for the relative error in energy is dominated
by the velocity term of order 5 with a quintic interpolati-

(p+1)
on. This means that, by using expression ahp“y‘(rz;‘j_il;f)
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for the interpolation error, the expected difference of 5
and 500 days step-size sequences is (500/5)% = 100.

Figure 5 contains the graphs of the relative error
in energy for ERKN101217 when used with the
cubic, quintic (one-step), 2-step and 3-step interpolati-
on polynomials, of degrees 3, 5, 8 and 11, respectively;
and the three interpolants of 23, 26, and 29 stages, havi-
ng orders 10, 11, and 12, respectively. The ERKN101217
integrator for an integration of 10° years using TOL =
10~ requires, on average, a step-size of approximately
290 days. We find that the total error for the cubic, qui-
ntic, and 2-step interpolations does not increase with t. It
remains pretty much constant, as was expected, because
the interpolation error dominates the integration error.

The interpolation errors at the end of the integration
have a reasonably good agreement with the results obtai-
ned in Figure 4. With all three interpolants, i.e., 23-stage,
26-stage and 29-stage, we have obtained an accuracy
of approximately 10~''. With the 3-step interpolation
scheme, which is cheaper than all three interpolants, the
accuracy is about the same at the end of the integrati-
on, although initially it is dominated by the interpolati-
on error. Therefore, it is better to use an interpolant
if the best accuracy is required. However, if the time
interval is large enough, about 10° years or more, then
the integration error starts to dominate and it is better
to switch to a 3-step interpolation, because this will save
CPU-time and does not affect accuracy. We also found
(not shown) that the 2-step interpolation which requires
less CPU-time than the 3-step interpolation will give the
same accuracy after even longer integration times.

ERKN689
10 T

Relative error in energy

2-step 12-stage

10 10 10* 10 10
Time in years

Fig. 6. The H;ei for ERKN689 using cubic, quintic, 2-step

Hermite interpolations, and the 12-stage interpolant over one

million years of integration for the Jovian problem with local
error tolerance of 10~ 1°

Figure 6 shows the relative error growth in energy
for ERKN689 using the cubic, quintic, and two-step
Hermite interpolation schemes together with a 12-stage
interpolant. For TOL = 1071, the average time-step is
approximately 65 days. For the two-step interpolation
and the 12-stage interpolant, there is no real difference
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between these two graphs, unlike for FERKN101217 using
the 3-step interpolation and its interpolants as shown in
Figure 5. The two errors increase side by side right from
the beginning, indicating that there is no sense in using
the 12-stage interpolant, because it costs more CPU-time
than the 2-step interpolation.

We extend the above experiment for ERKN689 by
performing an integration of 10 million years. After
approximately 7 million years (not shown) it is benefi-
cial to switch to quintic interpolation, because it takes
less CPU-time. The quintic Hermite interpolation is not
under consideration for the ERKN101217 integrator,
because the total error differs by three orders of magni-
tude in comparison with FRKNG689.
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10 !

10—4 m
- / - |
GC" cub —

e 10 —7

c L |

L e

I e

$ 10’10 aun / 7:7r/"‘"mf\ 7\*“%/“"«{% LJWWwWM

2 A

k) -/

o

T 10 12 ) M
2-step 3-step -

107 - / |

/
interpolant
_16
10 . . .
10° 10° 10* 10° 10°

Time in years

Fig. 7. The H,c for ODEX2 using cubic, quintic, 2-step, 3-

step Hermite interpolations, and its built-in interpolant over

one million years of integration for the Jovian problem with
the local error tolerance of 10~1¢

Figure 7 illustrates the relative error growth in energy
for ODEX?2 using cubic, quintic, two-step and three-step
interpolations together with its interpolant. On average,
ODEX2 uses a time-step of approximately 260 days if
we set TOL = 107'6; normally it is not recommended
to take such a small tolerance, because it is very close
to the machine precision and the round-off error could
affect the results greatly. We observe that the graph for
the interpolant shows oscillations, which indicates that
the round-off error is significant. We also found that
there are quite a few rejected time-steps. Combined wi-
th the asence of any rejected time-steps with either of
the tolerances 10~ and 107!, this is further evidence
that the results for TOL = 107 !¢ are affected by the
round-off error. Nevertheless, we are gaining an accuracy
of approximately 107! (determined by a linear least
square fit using data obtained by continuous approxi-
mation). This accuracy for TOL = 107! is approxi-
mately one order of magnitude better than the accuracy
obtained with TOL = 10~'%, which is expected when
reducing the tolerance by a factor of 10. This observati-
on suggests that the round-off error is insignificant. The
behaviour of the interpolant at the end of the integration

shows an abrupt dip followed by rapid oscillations. We
investigated this further by performing the experiments
with the same tolerance for up to 10® years. While the
oscillations continue, both H,. and L, increase with
the passage of time and the curve ends at a total error
around 10~ and 10710, respectively.

We performed the same experiments using the S-1%
integrator with a step-size of four days, along with the
cubic and quintic Hermite interpolation schemes. We
found for the cubic interpolation that the total error in
energy and angular momentum does not grow with ¢,
but the maximum global error has a reasonably good
agreement with the results obtained using a step-size
sequence of five days in the experiments (see Figure 4).
For the quintic Hermite interpolation, the error growth
in energy and angular momentum is below linear.

Integrator |Interpolation| FE, E, | Hrel | Lrel
ERKNG689 — 1.980(1.987|0.986(0.971
ERKNG689 2-step — — 10.991{0.979
ERKNG689 12-stage — — 10.985(0.970
ERKN1012 |— 1.997(1.996|0.998 |1.005
ERKN101217 |3-step — — 0.677]0.683
ERKN101217|23-stage — — 10.998{1.005
ERKN101217|26-stage — — 10.997]1.004
ERKN101217 |29-stage — — 10.997]1.005
ODEX2 — 1.514|1.457(0.327]0.474
ODEX2 3-step — — 10.589(0.632
ODEX2 interpolant — — 10.325|0.465
5-13 — 1.377(1.542|0.689/0.718
S-138 quintic — — |0.687]0.724

Table 2. The exponent b of the power law for the global error

in position and velocity, and H;ei and Ly over one million

years for the Jovian problem. We used local error tolerances

107*,1071° and 10716 with different interpolation schemes,

for the integrators ERKN689, ERKN101217, ODEX2, and S-
13, respectively. The step-size for S-13 is four days

Table 2 shows the exponent b in a linear least squares
fit for the power law at’. In particular, when low-
order interpolation schemes are used with high-order
variable-step-size integrators, the exponent b of the
power law should be very close to zero. For example,
for ERKN689, using the cubic and quintic Hermite
interpolation schemes, the exponent b varies from 0.029
to 0.35 for Hy., and L. We already noted that the
ODEX?2 integrator is affected by round-off error if
TOL = 10716, To observe the extended behaviour of
H,o and L., we integrated ODEX2 using TOL = 10716
over 107 years and observed the values for H, and Ly as
0.76 and 0.89, respectively. We also repeated experiments
for ODEX2 with TOL = 1075 and 10~!* and observed
that the value of the exponent increases. In particular,
with TOL = 10, the value of b is approximately 1.92
for the global error in position; for H,, and L., it is
approximately 0.99 and 1.01, respectively.
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V. SUMMARY AND CONCLUSIONS

The main objective of this paper was to investigate
the possibilities of replacing the interpolants of certain
integrators by other interpolation schemes, perhaps at a
cost of alittle bit of accuracy. We analysed and compared
the error growth for different combinations of numeri-
cal integrators and interpolation schemes. Our numeri-
cal testing involved comparing combinations of different
integrators and interpolation schemes over a short ti-
me interval and several long time intervals, as long as
100 million years for the Jovian problem with local error
tolerances ranging from 10716 to 10708,

The interpolation schemes play a vital role in our
work. The low-order interpolation schemes are unlikely
to be used in practice. We have included them in our
testing because we wanted to assess the effectiveness of
these interpolation schemes. Especially, it makes sense
to use a low-order interpolation scheme with a high-
order Stormer method when the step-size is four days
(for the Jovian problem), because this choice means
the interpolation error is below machine precision. We
performed many experiments using different interpolati-
on schemes with different integrators both over a short
time interval and several long time intervals of durati-
on as long as 100 million years. For long term simulati-
ons, experiments were performed for the Jovian problem
integrated up to 108 years. One of the strongest conclusi-
ons from these experiments is that the order of the conti-
nuous approximation should, with one notable excepti-
on in this paper, be compatible with the order of the
integrator. The notable exception occurs for the higher
order Stérmer methods when used with small step-sizes.
The order of the continuous approximation can be si-
gnificantly lower than the order of the Stoérmer method.
The reason why we get away with the low-order conti-
nuous approximation is because the S-13 integrator uses
an artificially small step-size of four days to eliminate
the truncation error at the machine precision and we are
just left with the round-off error. However, if we want
the truncation error to be 10716, then we might use the
step-size of sixteen days rather than four days. When we
use sixteen days, then the low-order continuous approxi-
mation (quintic Hermite interpolation) would fail.

To observe the behaviour of conserved quantities
like energy and angular momentum using different
interpolation schemes with different integrators, quite
a few experiments were performed. All these experi-
ments were performed for the Jovian problem over up-
to 10® years. One of the strong observations about all
these experiments is that if a low order interpolati-
on scheme is used with a high order integrator then
the interpolation error for a particular time will domi-
nate the integration error and will not increase with
t. This is because the interpolation error doesn’t grow
with time. We investigated the relative error in energy
for ERKN101217 when used with cubic, quintic, two-
step and three-step interpolation polynomials and the
3 interpolants, for ERKN689 using the cubic, quintic,
and two-step Hermite interpolation schemes together wi-
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th a 12-stage interpolant, for ODEX2 using cubic, qui-
ntic, two-step and three-step interpolations together wi-
th the interpolant, and for S-13 using cubic, and quintic
interpolation schemes.

ERKN101217 across the integration of 10° years using
TOL = 10~ on average takes approximately 290 days
of time-step. We observed that the total error for all the
low order interpolation schemes doesn’t increase with the
passage of time. With all three interpolants, we obtained
the accuracy of approximately 10~!! and then with the
3-step interpolation scheme which is cheaper than all the
three interpolants, the accuracy is about the same at the
end of the integration, though initially it was dominated
by the an interpolation error. So, about 10* years out of
all these possibilities, it is better to use interpolant if the
maximum accuracy is required but if it is integrated far
enough, the integration error starts dominating, and then
it is better to switch to a 3-step interpolation because
that is going to save the CPU time and doesn’t cost
the accuracy. And if integrated even further, a 2-step
interpolation is going to give the same accuracy, which
is a little cheaper, than a 3-step interpolation.

ERKNG689 with TOL = 107'° uses an average time-
step of approximately 65 days. We observed that for a
two-step interpolation and a 12-stage interpolant, there
is not any real difference between the plotted graphs for
the relative error in energy, unlike FRKN101217 using
a 3-step interpolation and interpolants, the two graphs
go side by side right from the beginning, indicating ri-
ght from the beginning there is no sense of using a
12-stage interpolant because it takes more CPU time
in comparison with a 2-step interpolation. And after
approximately 7 million years it is handy to switch to
a quintic interpolation (which was not even under consi-
deration with FRKN101217 as these two integrators wi-
th the quintic Hermite interpolation are different total
error by three orders of magnitude) as it costs less CPU
time.

On average, ODEX2 with TOL = 10716 uses a time-
step of approximately 260 days. We observed that the
graph for the interpolant shows oscillations, which is
indicating the possible effect of the round-off error. We
also observed that there are quite a few rejected time-
steps. This combined with the absence of any time-steps
with either of the tolerances 10714 and 107! is further
evidence that the results for TOL = 10716 are being
affected by the round-off error. Although, it is affected
by the round off error, yet we are gaining accuracy up
to 107!, which is approximately one order of magni-
tude better than the accuracy obtained with TOL =
10715 and that is what you can expect by reducing the
tolerance 10 times. So, reducing the tolerance from 10~15
to 10716 is not making things difficult but we are gaining
accuracy, which indicates that the round-off error is insi-
gnificant. For the interpolant, the behaviour of the plot
at the end of the integration shows that the curve wi-
th oscillations is dipping-down. To observe the extended
behavior we performed the experiment with the same
tolerance for up to 10® years and it was observed that
(with the oscillation going up and down) both H,. and
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L, increase with the passage of time and end-up wi-
th the total error around 10~% and 107!, respectively.
For S-183, the integration was performed in double preci-
sion and we observed that for cubic interpolation the
total error in energy and angular momentum doesn’t
grow with ¢ but the achieved accuracy has a reasonably
good agreement with the results obtained using 5 days
in the experiment shown in Figure 4. For the quintic

Hermite interpolation, the error growth in energy and
angular momentum has been observed below the linear
(the exponent of power law is less than 1 as mentioned
in Table 2) error growth.
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HEIIEPEPBHI HABJINXKEHHS JJISI JOBIrOCTPOKOBUX YNCJIOBUX CUMYJISIIIN
COHAYHOI CUCTEMU

1. Pexman
Kagedpa mamemamuru Inorcenepro-mernonozivhozo ynieepcumemy, Jlaxop, Iaxucman

MIICAHO Ta MPOAHATIZ0BAHO e(PEeKTUBHICTH Pi3HUX KOMOIHAII I 9OTHPHOX YMCIOBUX iHTEIPATOPIB BHUIO-
IO LOPsJKY Ta [0 JEB ST CXeM IHTepLOJiduil, 3aCTOCOBAHMUX JI0 3aJa4i, sgka BKarodyae CoHue i 4yorupu
ra3osi riranru (3oBuimui mianern), a came: FOmirep, Carypu, Ypan ta Henryn. Posriaguayro cxemu in-
Teprosidnii Epmita 3 oganM, BOMa Ta TPhOMa JACOBUMHU KPOKAMU ¥ IHTEPIIOISHTAMHA /IS iHTEI' DATOPIB
ODEX2 ta ERKN. Iarepnonsiaru € OCOOIMBUM MPUKIAIOM CXEMH iHTEPIOJAIil, M0 Jaf0Th HaOIuKe-
HH¢, HEIIEPEPBHE IIPOTAIOM OJHOI'O KPOKY §I HA BCbOMY iHTepBaJii iHTErpyBaHHsd. lHTEpHOIAHTHA 1OCUTDH
BapTiCHI MOPIBHIHO 3 iHMMUMYU cxeMaMu iHTeprnosarii. Tomy ommiero 3 1miedl 1miel mpalli € JOCTiIKeHHS MO-
2KJIMBOCTEHM 3aMiHU IHTEPIOSIHTIB ITEBHUX IHTEI' DATOPIB iHIUMU CXEeMaMU iHTEPIIOJAIIl, MOXKJIUBO, ITIHOIO
He3HAYHOI BTpaTu To4HOCTI. EXcriepumenTn mpoBeneno, niod A0CaiuTr 3pOCTaHHs TOXUOOK Y IOJIO2KEH-
HSX, TIIBUIKOCTSIX 1 BiTHOCHII MOXMOII eHeprii Ta KyTOBOTO MOMEHTY 3 BUKOPUCTAHHSIM Pi3HUX KOMOiHAITiit
IHTErpaTopiB i cxeM IHTEPIOJIAIIi Ha BEIMKOMY iHTepBaJi iHTerpyBaHHsd, axK 10 100 MiTbHOHIB POKIB /1
3aza4i FOmitepa 3 JoKaibHEM H0IycKoM oMok Bigx 10716 o 10708,

Kuarouosi caoBa: npobsiema Fnitepa, cxemu iHTepHosil, JOBrOCTPOKOBE MOJIETIOBAHHSI.
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