Journal of Physical Studies 25(4), Article 4601 [6 pages] (2021)
DOI: https://doi.org/10.30970/jps.25.4601

THE DYNAMICS OF CRYSTAL LATTICE OF SOLID SOLUTIONS BASED ON ZIRCONIUM DIOXIDE

V. I. Slisenko1, O. E. Zoteev2 , O. A. Vasylkevych1 , V. O. Zoteev2 , V. V. Krotenko1

1Institute for Nuclear Research NASU, 47, Nauky Ave., Kyiv, UA–03028, Ukraine,
2Odessa National Polytechnic University, 1, Shevchenko Ave., Odesa, UA–65044, Ukraine
e-mail: slisenko@kinr.kiev.ua; a.vas@i.ua; zoteevoleg@i.ua; szoteev@gmail.com

Received 04 February 2021; in final form 09 July 2021; accepted 05 October 2021; published online 03 December 2021

The paper studies structure and dynamics of the crystal lattice of solid solutions based on zirconium dioxide. Structural experiments were performed on a KSN-2 neutron spectrometer (in the ‟diffractrometer” mode) and DRON-3.0 X-ray diffractrometer. The phonon spectrum of solid solutions was obtained using the method of inelastic scattering of thermal neutrons. Dispersion ratios were obtained with KSN-2 (in a ‟triple-axes-spectrometer” mode) on monocrystal samples. It is known that the introduction of such ions as Ca, Y, Nd, Sc into the ZrO$_{2}$ crystal lattice stabilizes the cubic structure of the lattice. Particular attention was paid to the ZrO$_{2}$ system - 33% mol. Y$_{2}$O$_{3}$. In this system, the possibility of formation of a pyrochlor structure was considered. It has been suggested that a phase transition occurs in ZrO$_{2}$-based solid solutions under the influence of neutron irradiation and temperature, which can lead to disruption of coatings made of these materials.

Key words: crystal lattice dynamics, inelastic scattering, thermal neutrons.

Full text


References
  1. L. Smith, T. Mohammed, L. Koh, J. Reaney, J. Am. Ceram. Soc. 102, 703 (2019);
    Crossref
  2. P. Platt, P. Frankel, M. Gass, R. Howels, M. Preuss, J. Nucl. Mater. 454, 290 (2014);
    Crossref
  3. G. Sharma, S. Ushakov, A. Navrotsky, J. Am. Ceram. Soc. 101, 31 (2018);
    Crossref
  4. O. Vasylkevytch et al., Ukr. J. Phys. 25, 381 (1980).
  5. V. Stubican, R. Hink, T. Ray, J. Am. Ceram. Soc. 61, 17 (1978);
    Crossref
  6. Y. Moria, A. Navrotsky, J. Chem. Thermodyn. 38, 211 (2006);
    Crossref
  7. P. Simoncic, A. Navrotsky, J. Am. Ceram. Soc. 90, 2143 (2007);
    Crossref
  8. C. Gaglieri, R. Alarcon, M. de Godoi, Thermochim. Acta 653, 59 (2017);
    Crossref
  9. A. Sobol, U. Voronko, J. Phys. Chem. Solids 65, 1103 (2004);
    Crossref