Journal of Physical Studies 25(4), Article 4602 [5 pages] (2021)
DOI: https://doi.org/10.30970/jps.25.4602

DETERMINATION OF ALL PIEZOELECTRIC COEFFICIENTS AND ELASTIC STIFFNESS CONSTANTS IN LiTaO3 CRYSTALS BASED ON MEASUREMENTS OF ACOUSTIC WAVE VELOCITIES

I. Martynyuk-Lototska1 , I. Yidak2, O. Korneyev2, A. Ratych3, A. Andrushchak2 

1Vlokh Institute of Physical Optics, 23, Dragomanov St., Lviv, Ukraine,
e-mail: iryna.ml.lviv@gmail.com
2Lviv Polytechnic National University, Department of Applied Physics and Nanomaterials Science,
10, Ustiyanovych St., Room 32, Lviv, UA–79013, Ukraine,
e-mail: anatolii.s.andrushchak@lpnu.ua
3Lviv Polytechnic National University, Department of Telecommunications,
2, Profesorska St., Lviv, UA–79013, Ukraine

Received 16 July 2021; accepted 04 November 2021; published online 26 November 2021

This paper presents the results of ultrasonic measurements in trigonal LiTaO3 crystals. The samples of direct section with faces perpendicular to the main crystallographic axes and X/45 sections of LiTaO3 crystals were manufactured for experimental studies. The velocities of longitudinal and transverse acoustic waves along the three principal crystallographic axes and two additional axes in theYZ plane in trigonal crystals of point group 3m LiTaO3 crystals were measured using the pulse-echo overlap method. In the piezoelectric crystals, elastic and electrical properties are related and the propagation of an acoustic wave is accompanied by the appearance of electric fields, which must be taken into account in the calculations. The relations for the complete determination of all components of the matrices of elastic stiffness and piezoelectric coefficients based on all necessary acoustic wave velocities measured were derived from the Christoffel equation for the piezoelectric crystals. Using the obtained ratios, all components of the tensors of piezoelectric coefficients, elastic stiffness constants, as well as all elastic compliances of LiTaO3 crystals are calculated. The obtained results are consistent with the literature data and will be used in further measurements and calculation of the spatial anisotropy of induced (electro-, piezo- and acousto-optical) effects on the same crystal samples in order to select the most effective geometry of their possible practical use.

Key words: elastic coefficients, piezoelectric coefficients, lithium tantalate, acoustic wave velocities.

Full text


References
  1. Undoped & doped Lithium Niobate (LiNbO3 or LNB) and Lithium Tantalate (LiTaO3 or LTA), http://www.mt-berlin.com/frames_cryst/descriptions/lnb_lta.htm
  2. M. Schossig, V. Norkus, G. Gerlach, Infrared Phys. Technol. 63, 35 (2014);
    Crossref
  3. Ю. С. Кузьминов, Ниобат и танталат лития. Материалы для нелинейной оптики (Наука, Москва, 1975).
  4. R. T. Smith, F. S. Welsh, J. Appl. Phys. 42, 2219 (1971);
    Crossref
  5. V. Norkus, G. Gerlach, G. Hofmann, Proc. SPIE 3892, 233 (1999);
    Crossref
  6. A. Ismangila, T. P. Negaraa. J. Sci. Innovare 1, 54 (2018);
    Crossref
  7. Agus Ismangil, Renan Prasta Jenie, Irmansyah, Irzaman, Procedia Environ. Sci. 24, 329 (2015);
    Crossref
  8. Lithium Tantalate (LiTaO3) Wafers, https://www.universitywafer.com/lithium-tantalate-litao3.html
  9. Sh. Aoyagi et al., Jpn. J. Appl. Phys. 54, 10NB03 (2015);
    Crossref
  10. А. С. Андрущак, О. А. Бурий, Н. А. Андрущак, Н. М. Дем'янишин, Просторова анізотропія індукованих оптичних ефектів у кристалічних матеріалах: монографія у 2-ох томах. Т.1. Аналітичний опис, геометричне представлення та методика експерименту (Простір М, Львів, 2019).
  11. А. Андрущак, О. Бурий, Н. Андрущак, Н. Дем'янишин, Просторова анізотропія індукованих оптичних ефектів у кристалічних матеріалах. Т. 2: Електро-, п'єзо-, пружно- та акусто-оптичний ефекти в досліджених кристалах (Простір М, Львів, 2021).
  12. A. S. Andrushchak et al., Opt. Laser Eng. 47, 24 (2009);
    Crossref
  13. A. S. Andrushchak et al., J. Appl. Phys. 108, 103118 (2010);
    Crossref
  14. О. А. Buryy, А. S. Andrushchak, S. B. Ubizskii, J. Appl. Phys. 113, 083103 (2013);
    Crossref
  15. К. Н. Баранский, Физическая акустика кристаллов (Изд-во МГУ, Москва, 1991).
  16. E. P. Papadakis, J. Acoust. Soc. Am. 42, 1045 (1967);
    Crossref
  17. ANSI/IEEE Std 176-1987 – IEEE Standard on Piezoelectricity (IEEE, 1988);
    Crossref
  18. F. Mouhat, F.-X. Coudert, Phys. Rev. B 90, 224104 (2014);
    Crossref
  19. Акустические кристаллы: cправочник, под ред. М. П. Шаскольской (Наука, Москва, 1982).
  20. T. Yamada, H. Iwasaki, N. Niizeki, Jpn. J. Appl. Phys. 8, 1127 (1969).
  21. A. W. Warner, M. Onoe, G. A. Soquin, J. Acoust. Soc. Am. 42, 1223 (1967);
    Crossref