Journal of Physical Studies 25(4), Article 4701 [9 pages] (2021)
DOI: https://doi.org/10.30970/jps.25.4701

STRUCTURE AND ELECTRONIC PROPERTIES OF CsPbBr3 PEROVSKITE: FIRST PRINCIPLE CALCULATIONS

M. Kovalenko , O. Bovgyra , V. Kolomiets 

Ivan Franko National University of Lviv,
8, Kyrylo and Mefodiy St., Lviv, UA–79005, Ukraine

Received 01 July 2021; in final form 26 October 2021; accepted 03 November 2021; published online 18 November 2021

In recent years, inorganic cesium lead bromide (CsPbBr3) perovskite has been widely studied due to its potential spplication in light-emitting devices and solar cells. In this work, within the density functional theory framework, we performed a study of structural and electronic properties of temperature-dependent phases of the CsPbBr3 crystal, in particular, the cubic, tetragonal, and orthorhombic phases using different approximations for the exchange-correlation functional. The analysis of structural parameters shows that the lattice constants and the volume of the unit cell change when the CsPbBr3 crystal changes from the cubic phase to the tetragonal and orthorhombic structures. A good agreement between theoretical and experimental results is obtained using GGA(PBEsol) and GGA(PBEsol)+U approximations. The Mulliken population analysis indicates that between Cs and Br atoms there is a stronger ionic bonding and at the same time there is a stronger covalent bonding between Br and Pb atoms. The electronic structure of CsPbBr3 perovskite was investigated by estimating the change in the electronic properties when included in the calculations of spin-orbit coupling (SOC). The results of the calculations of the band-energy structure showed that the cubic, tetragonal, and orthorhombic crystalline phases of perovskite are semiconductors and have direct bandgaps. Also, we found that the bandgap changes with a change in the phase structure. The obtained values of the bandgap for all crystalline phases of CsPbBr3 perovskite are in good agreement with the previously obtained theoretical calculations as well as experimental data. We established that the tilting angle has a crucial effect on the bandgap width of the tetragonal and orthorhombic phases. The results of the obtained first-principle calculations show a wide temperature range of the possible use of CsPbBr3 perovskite. \bigskip

Key words: density functional theory, bandgap, perovskite, electronic structure, density of states.

Full text


References
  1. G. Zhang et al., Chem. Soc. Rev. 45, 5951 (2016);
    Crossref
  2. X. Mao et al., J. Phys. Chem. C 122, 7670 (2018);
    Crossref
  3. G. Murtaza, I. Ahmad, Phys. B: Cond. Matt. 406, 3222 (2011);
    Crossref
  4. M. Zhang et al., J. Cryst. Growth 484, 37 (2018);
    Crossref
  5. H. Ito, H. Onuki, R. Onaka, J. Phys. Soc. Jpn. 45, 2043 (1978);
    Crossref
  6. W.-Q. Liao et al., Nat. Commun. 6, 7338 (2015);
    Crossref
  7. D.-L. Wang et al., Sci. Rep. 6, 18922 (2016);
    Crossref
  8. K. A. Bush et al., Nat. Energy 2, 17009 (2017);
    Crossref
  9. P. Cuiet et al., Nat. Energy 4, 150 (2019);
    Crossref
  10. N. Yantara et al., J. Phys. Chem. Lett. 6, 4360 (2015);
    Crossref
  11. K. Lin et al., Nature 562, 245 (2018);
    Crossref
  12. M. Kulbak et al., J. Phys. Chem. Lett. 7, 167 (2016);
    Crossref
  13. X. Zhang et al., ACS Appl. Mater. Interfaces 9, 4926 (2017);
    Crossref
  14. Y. Ling et al., Adv. Mater. 28, 8983 (2016);
    Crossref
  15. Z. Wei et al., Nanoscale 8, 18021 (2016);
    Crossref
  16. M. Kulbak, D. Cahen, G. Hodes, J. Phys. Chem. Lett. 6, 2452 (2015);
    Crossref
  17. V. B. Mykhaylyk et al., Sci. Rep. 10, 8601 (2020);
    Crossref
  18. M. Rodová, J. Brožek, K. Knížek, K. Nitsch, J. Therm. Anal. Calorim. 71, 667 (2003);
    Crossref
  19. A. S. Verma, A.Kumar, S. R. Bhardwaj, Phys. Status Solidi B 245, 1520 (2008);
    Crossref
  20. Y. H. Chang, C. H. Park, J. Korean Phys. Soc. 44, 889 (2004).
  21. M. Ahmad et al., J. Alloys Compd. 705, 828 (2017);
    Crossref
  22. R. A. Jishi, O. B. Ta, A. A. Sharif, J. Phys. Chem. C 118, 28344 (2014);
    Crossref
  23. H. M. Ghaithan, Z. A. Alahmed, S. M. H. Qaid, M. Hezam, A. S. Aldwayyan, ACS Omega 5, 7468 (2020);
    Crossref
  24. F. Tran, P. Blaha, Phys. Rev. Lett. 102, 226401 (2009);
    Crossref
  25. B. Andriyevsky et al., J. Electron. Mater. 48 (9), 5586 (2019);
    Crossref
  26. I. M. Kunyo et al., J. Phys. Stud. 22, 3301 (2018);
    Crossref
  27. A. I. Kashuba et al., Appl. Nanosci., in press (2021);
    Crossref
  28. M. Kovalenko et al., Phys. Chem. Solid State 22, 153 (2021);
    Crossref
  29. I. E. Castelli, J. M. García-Lastra, K. S. Thygesen, K. W. Jacobsen, APL Mater. 28, 081514 (2014);
    Crossref
  30. M. G. Goesten, R. Hoffmann, J. Am. Chem. Soc. 140, 12996 (2018);
    Crossref
  31. B. Kang, K. Biswas, J. Phys. Chem. Lett. 9, 830 (2018);
    Crossref
  32. C. C. Stoumpos et al., Cryst. Growth Des. 13, 2722 (2013);
    Crossref
  33. Q. A. Akkerman et al., J. Am. Chem. Soc. 138, 1010 (2016);
    Crossref
  34. R. B. Sadok, D. Hammouténe, N. Plugaru, Phys. Status Solidi B 258, 2000289 (2020);
    Crossref
  35. J. Qian,B. Xu, W. Tian, Organ. Electron. 37, 61 (2016);
    Crossref
  36. Ye Yuan et al., Chinese Phys. B 24, 116302 (2015);
    Crossref
  37. Q. Chen et al., Nature 561, 88 (2018);
    Crossref
  38. P. Giannozzi et al., J. Phys. Condens. Matter 29, 465901 (2017);
    Crossref
  39. H. J. Monkhorst, J. D. Pack, Phys. Rev. B 13, 5188 (1976);
    Crossref
  40. E. Welch, L. Scolfaro, A. Zakhidov, AIP Adv. 6, 125037 (2016);
    Crossref
  41. M. S. Kirschner et al., Nat. Commun. 10, 504 (2019);
    Crossref
  42. S. Hirotsu, J. Harada, M. Iizumi, K. Gesi, J. Phys. Soc. Jpn. 37, 1393 (1974);
    Crossref
  43. R. Dos Reis et al., Appl. Phys. Lett. 112, 071901 (2018);
    Crossref
  44. T. J. Whitcher et al., NPG Asia Mater. 11, 70 (2019);
    Crossref
  45. J. Zhao et al., J. Phys. Chem. Lett. 8, 3115 (2017);
    Crossref
  46. C. K. Moller, Nature 182, 1436 (1958);
    Crossref
  47. K. Heidrich et al., Phys. Rev. B 24, 5642 (1981);
    Crossref
  48. T. Paul et al., J. Mater. Chem. C 6, 3322 (2018);
    Crossref
  49. Y. Li et al., Sol. RRL 2, 1800164 (2018);
    Crossref
  50. O. Yaffe et al., Phys. Rev. Lett. 118, 136001 (2017);
    Crossref
  51. G. Mannino et al., J. Phys. Chem. Lett. 11, 2490 (2020);
    Crossref