Journal of Physical Studies 25(4), Article 4801 [5 pages] (2021)
DOI: https://doi.org/10.30970/jps.25.4801

CONDUCTIVITY OF CsPbBr3 AT AMBIENT CONDITIONS

L.-I. I. Bulyk{1,2} , O. T. Antonyak1, Ya. M. Chornodolskyy1 , R. V. Gamernyk1 , T. M. Demkiv1 , V. V. Vistovskyy1 , A. Suchocki2 , A. S. Voloshinovskii1 

1Ivan Franko National University of Lviv, 8, Kyrylo & Mefodiy St., Lviv, Ukraine
2Institute of Physics, Polish Academy of Sciences, Al. Lotników 32/46, 02-668, Warsaw, Poland
e-mail: tmdemkiv@gmail.com

Received 20 August 2021; in final form 10 November 2021; accepted 22 November 2021; published online 22 December 2021

The properties of electrically conductive CsPbBr$_3$ single crystals obtained from the melt have been studied. According to the results of Raman spectra, the covalent bonds in the octahedra [PbBr$_6$]$^{4-}$ have different strengths in different directions. This bond anisotropy promotes the formation of bromine vacancies located along selected crystallographic directions, which become sites of crystal degradation and the formation of Cs$_4$PbBr$_6$ microformations. A potential barrier at the boundary between the Cs$_4$PbBr$_6$ single crystal and the Cs$_4$PbBr$_6$ microformations was found.

Key words: single crystal, electrically conductive, Raman spectra, voltage-current characteristics, microformations.

Full text


References
  1. X. Mo et al., Nanoscale 11, 21386 (2019);
    Crossref
  2. X. Zhang, F. Wang, B. Bin Zhang, G. Zha, W. Jie, Cryst. Growth Des. 20, 4585 (2020);
    Crossref
  3. H. Li, Q. Wei, Z. Ning, Appl. Phys. Lett. 117, 060502 (2020);
    Crossref
  4. M. V. Kovalenko, M. I. Bodnarchuk, Chimia: Int. J. Chem. 71, 461 (2017);
    Crossref
  5. M. Dendebera et al., J. Lumin. 225, 117346 (2020);
    Crossref
  6. T. J. Whitcher et al., NPG Asia Mater. 11, 70 (2019);
    Crossref
  7. J. Xue et al., Adv. Funct. Mater. 29, 13, 1807922 (2019);
    Crossref
  8. B. Akbali, G. Topcu, T. Guner, Phys. Rev. Mater. 2, 034601 (2018);
    Crossref
  9. J. H. Cha et al., J. Phys. Chem. Lett. 8, 565 (2017);
    Crossref
  10. L.-I. Bulyk et al., J. Alloys Compd. 884, 161023 (2021);
    Crossref
  11. O. Yaffe et al., Phys. Rev. Lett. 118, 136001 (2017);
    Crossref
  12. M. Zhang et al., J. Cryst. Growth 484, 37 (2018);
    Crossref
  13. M. I. Saidaminov et al., Adv. Opt. Mater. 5, 1600704 (2017);
    Crossref
  14. H. Zhang et al., Cryst. Growth Des. 17, 6426 (2017);
    Crossref
  15. S. Svirskas et al., J. Mater. Chem. A 8, 14015 (2020);
    Crossref
  16. L. Zhang, Q. Zeng, K. Wang, J. Phys. Chem. Lett. 8, 3752 (2017);
    Crossref
  17. C. Wang et al., Adv. Mater. 31, 1902492 (2019);
    Crossref
  18. Z. Ma et al., Nat. Commun. 9, 4506 (2018);
    Crossref
  19. Z. Qin et al., Chem. Mater 31, 9098 (2019);
    Crossref