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I. INTRODUCTION

The term �impedance� was introduced by Oliver
Heaviside [1] in 1886. A few years later, Arthur Kennelly
represented it with complex numbers [2]. Usually, we
understand impedance as some extension of a resistance
concept which is applicable in DC circuits, to the AC
electrical circuits. It has a real part and an imaginary
part. The imaginary part is caused by both the e�ects of
the induction of voltages in conductors by magnetic �-
elds and the electrostatic storage of charge induced by
voltages between conductors. At the same time, resi-
stance forms the real part of the impedance.
It would be a mistake to state that impedance

is only related to electrical circuits. Impedance is a
generalized concept which is widely used in di�erent
areas of science from classical mechanics, electricity and
acoustics to geology and medicine. Generally, a wave
impedance characterizes the resistance of the media to
the propagation of wave processes in it. For example,
mechanical impedance relates velocities with forces
which act on a mechanical system and indicates how
much a mechanical system resists the motion caused by
a harmonic force [3]. Acoustic impedance is a measure
of the resistance which a medium has to the acoustic
�ow. This resistance is a reaction to the acoustic pressure
applied to the medium [4].
Wave impedance of an electromagnetic wave is the

resistance which an electromagnetic wave experiences
when it propagates along a transmission line or through a
medium including vacuum. Wave impedance can be de�-
ned through the ratio between transverse components of
the electric and magnetic �elds [5].
In all abovementioned cases, the equations which

describe the propagation of wave processes in di�erent
media have the same form and it gives us the reason to
introduce the impedance concept in all these cases.
So now a question arises: what about the wave function

and the Schr�odinger equation which describes its behavi-
or? Can we talk about the applicability of the wave

impedance concept in this case? The answer is de�nitely
yes, because the Schr�odinger equation has the same form
as equations which describe wave processes in mechan-
ics, acoustics, electrical circuits etc. It also means that
we can take the results obtained for a wave impedance
in other areas of physics and apply them to quantum
mechanical systems. Khondker, Khan and Anwar were
the �rst who did it [6]. They used an analogy with an
electrical transmission line to introduce the concept of
quantum wave impedance. Further papers demonstrated
the e�cacy of the quantum wave impedance approach
for an analysis of quantum-mechanical structures with a
potential which has a complicated spatial structure.

Although this approach is quite good and allows
applying the relations obtained within the transmissi-
on line theory to quantum mechanical systems, it is
still worth getting the relations for a quantum mechani-
cal impedance from the �rst principles because this will
open other dimensions of the application of the quantum
wave impedance method. But neither in paper [6] nor in
the further papers (see, for example, [7�23]) dedicated to
the quantum wave impedance, a systematic introducti-
on of this concept or a consistent theory based on the
�rst principles was proposed. So, the aim of this article
is to �ll this gap by constructing such a theory starting
from the Schr�odinger equation; to demonstrate an appli-
cation of quantum wave impedance for solving both the
scattering and the bound states problems.

II. A NON-LINEAR DIFFERENTIAL
EQUATION FOR THE QUANTUM WAVE

IMPEDANCE

We start from the Schr�odinger equation and rewrite it
in the following way

(
ψ′(x)

ψ(x)

)′

+

(
ψ′(x)

ψ(x)

)2

=
2m (U(x)− E)

ℏ2
. (1)
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Multiplying both sides of the previous equation by
ℏ/(im) and introducing the following notation

Z(x) =
ℏ
im

(
ψ′(x)

ψ(x)

)
(2)

we get a �rst order di�erential equation for the quantum
wave impedance

dZ(x)

dx
+ i

m

ℏ
Z2(x) = i

2

ℏ
(E − U(x)) . (3)

Note that this equation is a nonlinear Riccati equation.
It seems that Hartree [24] was the �rst who used a logari-
thmic derivative of the wave function and introduced a
non-linear di�erential equation for it on the basis of the
Schr�odinger equation. He applied this concept to study
an atom with a non-Coulomb central �eld.
In formula (3) Z(x) is called the quantum wave

impedance. A multiplier ℏ/(im) is introduced so that the
expression for the probability current density has the si-
mplest form:

j =
ℏ

2im

(
ψ∗ dψ

dx
− ψ

dψ∗

dx

)
=

1

2
|ψ(x)|2 (Z(x) + Z∗(x))

= |ψ(x)|2 Re [Z(x)] . (4)

Using (2), we get the relation between a quantum wave
impedance and a wave function in the following form

ψ(x) = C exp

 im
ℏ

x∫
Z(x′) dx′

 , (5)

where C is the constant. Thus, we can express the
probability current density only through a quantum wave
impedance function Z(x):

j =

∣∣∣∣∣∣C exp

 im
ℏ

x∫
Z(x′) dx′

∣∣∣∣∣∣
2

Re [Z(x)] (6)

= |C|2 exp

−2m

ℏ

x∫
Im [Z(x′)] dx′

Re [Z(x)] .

Naturally, the following question arises. What are the
advantages of a non-linear �rst order equation (Riccati
type equation for a quantum wave impedance) over a
linear second order equation (Schr�odinger equation)?
The main advantage is that the solution of a �rst-
order di�erential equation contains only one unde�ned
constant while a second order equation has two unde�ned
constants. So the procedure of the consecutive calculati-
on of quantum wave impedance is much easier compared
to a wave function calculation because instead of two
matching conditions it is enough to use only one.
If we de�ne the value for a quantum wave impedance

function Z(x) at an arbitrary point x = x0 (we call it
a boundary condition), then its values at other points
are de�ned by the equation (3) and the corresponding
matching condition. Moreover we might introduce two
functions, Z+(x|x0) and Z−(x|x0), namely

Z(x) =

{
Z−(x|x0), x < x0

Z+(x|x0), x > x0
(7)

so both of them belong to the solutions of the equation
(3) and aren't necessarily equal. It is also not necessary to
use the same value of x0 for both Z

− and Z+ functions.
Often it is appropriate to consider the following functions

Z−(x|b), x < b, Z+(x|a), x > a, (8)

where b > a. Their role we will be discussed later.

III. SCATTERING CASE

Dealing with the propagation of a quantum particle,
we can distinguish between two cases, namely a scatter-
ing case and a bound states one. In this section, we will
show how to use the obtained equation (3) for solving a
scattering task.
We say that we have a scattering case if such x0

exists that the wave incidenting on the left has the value
of energy bigger than the potential energy at any point
of the area (−∞, x0). In the case of a wave incidenting
on the right, the condition of the scattering case is very
similar: ∃x0,∀x ≥ x0, U(x) < E. Note that these condi-
tions don't take into account in�nite periodic systems,
which have to be considered separately.
A solution of the equation (3) in a scattering case

exists for any value of E and relates the probability
current density of the incidenting wave to the re�ected
and transmitted ones. A situation of particular interest
is the case of resonant tunneling when the re�ection
probability current density is equal to zero.
On the basis of formula (6), we see that for having

a constant value of probability current density j in the
whole region, the value of

ln (Re[Z(x)])− 2m

ℏ

x∫
Im[Z(x′)] dx′ = const (9)

has to be constant. This expression relates the real part
of the quantum wave impedance function to the imagi-
nary one. If const = 0, we have a full re�ection in a
studied system or a bound state. At the same time, the
following relation

ln (Re[Z(x)])− 2m

ℏ

x∫
Im[Z(x′)] dx′ = ln(z0) (10)

is a condition for �nding resonant levels, where z0 is the
characteristic impedance of the region x < x0, x0 →
−∞, when a wave incidents on the left. Note that z0 is
real and it is reasonable to rewrite the previous condition
in the following form

ln

(
Re[Z(x)]

z0

)
=

2m

ℏ

x∫
Im[Z(x′)] dx′. (11)

Potentials which satisfy this condition (11) for an arbi-
trary energy value (within the scattering case) are called
re�ectionless potentials [25]. For an arbitrary potential,
we can �nd only discrete energy values which satisfy this
condition (11). But it is not convenient to calculate the
energy values using (11). So it would be good to �nd an
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easier way of �nding resonant levels. For this let's consi-
der the following potential

U(x) =


U1, x ≤ a

f(x), a < x < b

U2, x ≥ b

(12)

and two quantum wave impedance functions Z−(x|b) and
Z+(x|a) [see (8)]. Then in the case of resonant levels, for
arbitrary x0 ∈ [a, b] we get:

ln

(
Re[Z+(x0|a)]

z0

)
=

2m

ℏ

x0∫
Im[Z+(x′|a)] dx′,

(13)

ln

(
Re[Z−(x0|b)]

z0

)
=

2m

ℏ

x0∫
Im[Z−(x′|b)] dx′.

Subtracting one equation from the other we obtain that

ln

(
Re[Z+(x0|a)]
Re[Z−(x0|b)]

)
(14)

=
2m

ℏ

x0∫
Im[Z+(x′|a)− Z−(x′|b)] dx′.

Now taking into account that this equation should be
valid for arbitrary x0 ∈ [a, b] and that in the case of a
wave incidenting on the left, the following equation holds
Z+(a|a) = z0, we get

Re[Z+(x0|a)] = Re[Z−(x0|b)],
(15)

Im[Z+(x0|a)] = Im[Z−(x0|b)]

or �nally

Z−(x0|b) = Z+(x0|a), x0 ∈ [a, b]. (16)

Although we derived this condition for a potential of
form (12), it is still valid for a scattering problem
with an arbitrary potential.

It is worth saying that the resonant tunneling of
waves is important in the formation of the characteri-
stics of wave structures, especially a spectral selection,
which allows providing extremely high signal decoupling
in operating and non-operating areas of frequency and
energy.

IV. BOUND STATES CASE

If such x1 and x2 exist that the energy of the wave is
less than the potential energy in each point of the region:
x ∈ (−∞, x1) ∪ (x2,∞), then we have a problem which
is qualitatively di�erent from the scattering one. It is
a bound states case, but note that this condition does
not include in�nite periodic systems, which have to be
considered separately. A solution of equation (3) exists
for any value of energy E, but only for discrete values of
E the solution for the quantum wave impedance function
Z(x) corresponds to the wave function ψ(x) which can
be normalized per unit. To normalize a wave function, it
is necessary at least that ψ(x) ∼ xα with α < −1, when
x → ±∞. It means that imZ(x)x/ℏ must be less than
−1, when x→ ±∞:

im

ℏ
Z(x)x < −1, x→ ±∞. (17)

The condition for �nding eigenvalues of energy is
the same we got for the scattering case (16). We
will demonstrate this using the potential energy of form
(12). Assume that we have solutions of the Schr�odinger
equation

− ℏ2

2m

d2ψ(x)

dx2
+ U(x)ψ(x) = Eψ(x),

E < min (U1, U2) (18)

in the region [a, b] both to the right and to the left of the
arbitrary point x0 ∈ [a, b] and Ψ+(x0|x) is the solution
to the left of the point x0, Ψ−(x0|x) is the solution to
the right of the same point. Both solutions can be depi-
cted as a linear combination of two linearly independent
functions:

Ψ+(x0|x) = A+ψ(x) +B+ϕ(x),

(19)

Ψ−(x0|x) = A−ψ(x) +B−ϕ(x).

When x ≤ a, we have the solution of the Schr�odinger
equation in the form

ΨL(x) = CL exp[κ1(x− a)], (20)

and for x ≥ b

ΨR(x) = CR exp[−κ2(x− b)], (21)

where κ1 =
√

2m(U1 − E)/ℏ, κ2 =
√

2m(U2 − E)/ℏ.
By applying boundary conditions at points a and b one

de�nes A+, B+, A−, B− through CR and CL, because
one has to satisfy both a wave function and its �rst deri-
vative matching at each interface. So

A+ψ(a) +B+ϕ(a) = CL, A+ψ
′(a) +B+ϕ

′(a) = κ1CL (22)

and

A−ψ(b) +B−ϕ(b) = CR, A−ψ
′(b) +B−ϕ

′(b) = −κ2CR. (23)
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Thus

Ψ+(x0|a) = CL

(
ϕ′(a)− ϕ(a)κ1

ψ(a)ϕ′(a)− ψ′(a)ϕ(a)
ψ(x0) +

ψ′(a)− ψ(a)κ1

ψ′(a)ϕ(a)− ψ(a)ψ′(a)
ϕ(x0)

)
,

(24)

Ψ−(x0|b) = CR

(
ϕ′(b) + ϕ(b)κ2

ψ(b)ϕ′(b)− ψ′(b)ϕ(b)
ψ(x0) +

ψ′(b) + ψ(b)κ2

ψ′(b)ϕ(b)− ψ(b)ψ′(b)
ϕ(x0)

)
.

Now at point x0 ∈ [a, b] one has to satisfy the following
matching conditions

Ψ+(x0|a) = Ψ−(x0|b), Ψ′
+(x0|a) = Ψ′

−(x0|b). (25)

Note that these conditions are valid only if the potential
at x0 point is not singular. In the case of a zero-range
singular (at x0 point) potential, we would have other
matching conditions, which depend on the type of si-
ngularity.
The solution for CL and CR exists only if

Ψ+(x0|a)
Ψ′

+(x0|a)
=

Ψ−(x0|b)
Ψ′

−(x0|b)
. (26)

It is a condition for �nding eigenvalues of energy. Multi-
plying both sides by ℏ/(im) one gets:

Z+(x0|a) = Z−(x0|b), (27)

where x0 is an arbitrary point from the region (a, b).
It isn't an unexpected result, since a standing wave

is a superposition of two waves of equal amplitudes
propagating in opposite directions. This fact explains the
equality of impedances Z− and Z+ at an arbitrary point
x0 ∈ (a, b).

V. SOLUTION FOR A CONSTANT VALUE OF
POTENTIAL ENERGY

In this section we are going to �nd a solution of equati-
on (3) in the region with constant potential energy.
Assume that the potential energy is equal to U0 and
the total energy of the particle is equal to E. This is
one of the simplest cases but at the same time it is very
important and it has many applications especially in the
area of numerical calculations.
If U(x) = U0, we can separate variables in equation

(3) and get that

iℏ
m

dZ

Z2 − z20
= dx, (28)

where z0 =
√

2(E − U0)/m is the characteristic
impedance of the region with constant potential energy
U0. After the integration of both parts of the previous
relation

ℏ
imz0

artanh

(
Z(x)

z0

)
= x+ x0, (29)

it is easy to get a solution for a quantum wave impedance
function

Z(x) = z0 tanh (γ0x+ ϕ) , (30)

where γ0 = imz0/ℏ is the magnitude which characteri-
zes the wave propagating in the medium with the
characteristic impedance z0, ϕ is the constant phase
which depends on the boundary conditions for a
quantum wave impedance function. Generally, γ0 is a
complex quantity, and we also use both k0 (ik0 = γ0)
when γ0 is fully imaginary and κ0 (κ0 = γ0) in the case
when γ0 is fully real.
Let us consider the behaviour of Z(x) when x→ ±∞

in two cases: γ0 is real and γ0 is imaginary. If γ0 is real,
then

lim
x→±∞

Z(x) = lim
x→±∞

z0 tanh (γ0x+ ϕ) = ±z0. (31)

In this case, we have the attenuation of a wave function
when x → ±∞ and the condition which we obtained in
the previous section

lim
x→±∞

im

ℏ
Z(x)x < −1 (32)

is satis�ed when iz0 < 0 (z0 is fully imaginary). It
also means that for the potential of form (12) we must
choose the boundary conditions for Z(x), x ∈ [a, b], in
the following form:

Z(a) = −z1, Z(b) = z2, (33)

where z1 =
√

2(E − U1)/m > 0 and z2 =√
2(E − U2)/m > 0 are the characteristic impedances

of the regions x < a and x > b consequently.

Indeed, a wave function ψ(x) = C exp

[
im
ℏ

x∫
Z(x′)dx′

]
can be normalized only if we choose Z(a) = −z1 and
Z(b) = z2 because it gives ψ(x) → 0, when x→ ±∞.
If γ0 is imaginary, then after an appropriate

representation of tanh(x) function it becomes obvious
that solution (30) contains a linear combination of plane
waves which propagate in opposite directions:

Z(x) = z0
exp[ik0x+ ϕ]− exp[−ik0x− ϕ]

exp[ik0x+ ϕ] + exp[−ik0x− ϕ]

= z0
exp[ik0x]− r exp[−ik0x]
exp[ik0x] + r exp[−ik0x]

, (34)

where ik0 = γ0 (k0 is real), r = exp(−2ϕ) is a wave
amplitude re�ection coe�cient.
For the potential energy of form (12), when the wave

incidents on the left, there is no reason for Z(x) to be
dependent on x, when x ≥ b. It is possible if we put
ϕ = ±∞. But only ϕ = ∞ is acceptable because only
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then we have the wave moving in the positive direction
of x axis.

ψ(x) = exp

 im
ℏ

x∫
z0dx

′

=C exp[ik2x], x ≥ b, (35)

where ik2 = γ2 (k2 is real). Indeed, as we remember
r = exp[−2ϕ] in the case of a wave which incidents on the
left. If ϕ = ∞ then r = 0. It means that a wave is moving
without re�ection, which is correct for the region x > b.
As a result we get the right-side boundary condition for
a quantum wave impedance function: Z(b) = z2 > 0.
By the same reasoning in the case of a wave incidenting

on the right, we have to choose ϕ = −∞. Thus, the left-
side boundary condition is Z(a) = −z1 < 0. Indeed, in
the case of ϕ = −∞ we have r = ∞, which means that
there is no wave moving in the positive direction of x,
so a wave is moving to the left without any re�ection,
which is correct for the region x < a.

VI. TRANSMISSION AND REFLECTION
COEFFICIENTS

The quantitative expressions of wave scattering are
two magnitudes, namely, a wave amplitude re�ection
coe�cient r and a wave amplitude transition coe�cient t.
The wave amplitude re�ection coe�cient describes how
much of an incidenting wave is re�ected. It is equal to
the ratio of the amplitude of the re�ected wave to the
amplitude of the incidenting wave. The wave transmi-

ssion amplitude coe�cient relates the amplitude of a
transmitted wave to the amplitude of the incidenting
wave.

Having r and t, we can calculate both re�ection R =
|r|2 and transmission T = |t|2 probabilities. The other
de�nition of these magnitudes is as follows:

T =
|j+|
|j|

, R =
|j−|
|j|

, (36)

where j is the probability density current of an inci-
denting wave, j+ is the probability density current of
a transmitted wave and j− is the probability density
current of a re�ected wave.

Let's consider a very simple example, namely, a
potential step, and �nd r, t, R, T for this case. So we
have a potential energy in the following form

U(x) =

{
U1, x ≤ x0

U2 > U1, x > x0
(37)

and assume that the wave incidenting on the left has
the energy U1 < E < U2. There are two regions of the
constant potential and each of them has its characteristic
impedance (z1 and z2, z1 is real and z2 is imaginary) and
a wave number (k1 and κ2, k1 and κ2 are real). In these
two regions, we calculate the probability density current
on the basis of formula (4) and taking into account that
ϕ = ϕR + iϕI . We get

Z1(x) = z1 tanh (ik1x+ ϕ1) =
z1
2

sinh(2ϕR)

sinh2(ϕR) + cos2(k1x+ ϕI)
+ i

z1
2

sin(2(k1x+ ϕI))

sinh2(ϕR) + cos2(k1x+ ϕI)
(38)

and
x∫
Im [Z1(x

′)] dx′ = − z1
k1

ln
[
sinh2(ϕR) + cos2(k1x+ ϕI)

]
. (39)

So, �nally

|j| − |j−| = z1
|C|2

2
sinh (2ϕR) = z1|C̃| (1− exp(−4ϕR)) , (40)

where |C̃|2 = 1
2 |C|

2 exp(2ϕR).

We �nd the value of ϕR from the matching condition
at the x0 point:

z1 tanh(ik1x0 + ϕ) = z2. (41)

Taking into account that

tanh(ik1x0+ϕ) =
1−exp[−2(ik1x0 + ϕ)]

1+exp[−2(ik1x0+ϕ)]

=
1−r exp[−2ik1x0]

1+r exp[−2ik1x0]
(42)

we get

r = exp(−2ϕ) = exp[2ik1x0]
1− z2/z1
1 + z2/z1

(43)

and

|r| = exp(−2ϕR) =

∣∣∣∣1− z2/z1
1 + z2/z1

∣∣∣∣ . (44)

In the considered case U1 < E < U2 the value of |r| is
always equal to 1 exept one particular case z1 = z2 when
r = 0. It is not a surprising result because if z1 = z2,
we have a constant potential in the whole region, which
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means that there is no reason for the wave to be re�ected
at point x0. But the obtained results are valid also for
the case of U1 < U2 < E when both z1 and z2 are real.
In this case |r| is not equal to 1.
On the basis of the obtained results, we can �nd

expressions for both a transmission probability T and
a re�ection probability R, namely

R = exp(−4ϕR), T = 1− exp(−4ϕR) (45)

or

R =

∣∣∣∣z2 − z1
z2 + z1

∣∣∣∣2 , T = 1−R. (46)

Now we can �nd the absolute value of a wave transmi-
ssion amplitude coe�cient

|t| =
√
1− |r|2. (47)

But the question about the phase of t is still relevant.
Generally, if we want to �nd the phase of t at the point
where the wave is re�ected, then we have a very simple
relation, namely

t = 1 + r. (48)

But if one considers the potential energy of form (12) and
is interested in the phase of t at the point x = b, then the
previous formula is not valid (it is valid only for the point
x = a if we consider the wave incidenting on the left).
To �nd the correct formula, we have to use the following
relations, which express the matching conditions for the
wave function:

C1 exp

 im
ℏ

a∫
Z1(x

′) dx′

 = C2 exp

 im
ℏ

a∫
Z2(x

′) dx′

 ,
(49)

C2 exp

 im
ℏ

b∫
Z2(x

′) dx′

 = C3 exp[ik3b].

Remembering that t = C3/(C1 exp[ϕ1]), we get

t=

exp

[
im
ℏ

a∫
Z1(x

′) dx′
]
exp

[
im
ℏ

b∫
Z2(x

′) dx′

]

exp

[
im
ℏ

a∫
Z2(x′) dx′

]
exp[ik3b+ ϕ1]

.(50)

The multiplier exp[ϕ1] in the denominator of the
expression for t is due to C1 exp[ϕ1], which is the ampli-
tude of the incidenting wave.
In the case of r calculation for the potential energy of

form (12), we have a formula very similar to (43), namely

r =
z1 − Z(a)

z1 + Z(a)
, (51)

when a wave incidents on the left and

r =
z2 − Z(b)

z2 + Z(b)
(52)

when a wave incidents on the right.

VII. TUNELLING THROUGH A SINGLE
RECTANGULAR BARRIER

A solution of the scattering problem for a single barri-
er plays a signi�cant role in the development of signal-
processing devices for di�erent waves. We speak about
single barrier resonant-tunneling structures which have
high selective properties. In reality a tunnel barrier is
implemented in the form of a semiconductor superlatti-
ce, a photonic or phononic crystal [26].

The simplest case of a single barrier system is a
rectangular potential barrier:

U(x) =

{
Ub, a ≤ x ≤ b

0, (x < a) ∧ (x > b)
. (53)

The quantum wave impedance at the point x = a can
be calculated on the basis of the results of the previous
section. Thus,

Z(a) = zb
z0 cosh(γbl)− zb sinh(γbl)

zb cosh(γbl)− z0 sinh(γbl)
, (54)

where l = b − a, iγb = (m/ℏ)zb, zb =
√
2(E − Ub)/m,

z0 =
√
E/m. Note that γb is real (zb is imaginary) when

E ≤ U0 and γb is imaginary (zb is real) in the opposite
case.

So now on the basis of formula (51) we easily get the
following relation:

r =
(1− z2b/z

2
0) sinh(γbl)

2zb/z0 cosh(γbl)− (1 + z2b/z
2
0) sinh(γbl)

=
(1− γ2b /γ

2
0) sinh(γbl)

2γb/γ0 cosh(γbl)− (1 + γ2b /z
2
0) sinh(γbl)

. (55)

To �nd R, we consider two cases separately: E ≤ Ub

and E > Ub. In the �rst case (E ≤ Ub) we have that γb
and z0 are real, zb is imaginary. So after introducing k0 =
mz0/ℏ (ik0 = γ0, γ0 is imaginary) and κb = mzb/(iℏ) =√
2m(Ub − E)/ℏ > 0 (zb is imaginary), we get

R = |r|2 =
(1 + κ2

b/k
2
0)

2 sinh2(κbl)

4γ2b /k
2
0 + (1 + κ2

b/k
2
0)

2 sinh2(κbl)
. (56)

In the second case (E > U0) we have that γb is imaginary,
zb and z0 are real. So after introducing kb = mzb/ℏ (ikb =
γb) we get

R = |r|2 =
(1− k2b/k

2
0)

2 sin2(kbl)

4k2b/k
2
0 + (1− k2b/k

2
0)

2 sin2(kbl)
. (57)

To �nd t we can use formula (50), in which for the si-
mpli�cation of calculations we assume that a = 0:
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t =

exp

[
γ0

0∫
tanh(γ0x

′ + ϕ1) dx
′
]
exp

[
γb

b∫
tanh(γbx

′ + ϕ2) dx
′

]

exp

[
γb

0∫
tanh(γbx′ + ϕ2) dx′

]
exp[γ0b+ ϕ1]

. (58)

So we obtain

t =
cosh(ϕ1) cosh(γbb+ϕ2)

cosh(γbb+ϕ2)eγ0b+ϕ1
=

1

2
(1 + e−2ϕ1)e−γ0b (cosh[γbb] + sinh[γbb] tanh[ϕ2]) . (59)

We get the values of e−2ϕ1 and tanh[ϕ2] on the basis
of matching conditions for a quantum wave impedance:

−z0 tanh(ϕ1) = zb tanh(ϕ2);

(60)

zb tanh(γbb+ ϕ2) = z0.

Remembering that the second matching condition can
be written as follows

zb
tanh(γbb) + tanh(ϕ2)

1 + tanh(γbb) tanh(ϕ2)
= z0 (61)

we �nd that

tanhϕ2 =
z0/zb − tanh(γbb)

1− z0/zb tanh(γbb)
,

1 + exp[−2ϕ1] =
2z0

z1 tanh[ϕ2] + z0

=
(1− z0/zb tanh(γbb))

1− (z2b + z20)/(2z0zb) tanh(γbb)
. (62)

Substituting them into the initial relation and taking into
account that b = l (because of the a = 0 assumption),
we �nally get

t =
2z0zb exp[−γ0l]

2z0zb cosh(γbl)− (z20 + z2b ) sinh(γbl)

=
2γ0γb exp[−γ0l]

2γ0γb cosh(γbl)− (γ20 + γ2b ) sinh(γbl)
. (63)

Note that γ0 is imaginary regardless on the value of Ub.
When E < Ub, z0 and κb are real and zb is imaginary.

Thus, we have

T = |t|2 =
4k20κ2

b

4k20κ2
b cosh

2(κbl) + (k20 − κ2
b )

2 sinh2(κbl)

×

{
1 +

1

4

(
k0
κb

+
κb

k0

)2

sinh2(κbl)

}−1

. (64)

For E > U0, z0 and zb are real and γb is imaginary,

ikb = γb and

T = |t|2 =
4k20k

2
b

4k20k
2
b cos

2(kbl)+(k20 + k2b )
2 sin2(kbl)

×

{
1+

1

4

(
k0
kb

− kb
k0

)2

sin2(kbl)

}−1

. (65)

VIII. CONCLUSIONS

Very often the most important and interesting aspect
(especially in the area of practical application) of wave
propagation is the issue of energy transmission. This
includes the calculation of such parameters as transmissi-
on and re�ection coe�cients and �nding conditions for
standing waves to form and resonant states to appear.
In this case, the impedance concept is very fruitful
because it gives the possibility to calculate the menti-
oned parameters in an easier way than by using other
methods.
This is clearly seen in the example of calculation of

the re�ection coe�cient for a singular rectangular barri-
er. We got the result for r (55) very easily by using the
quantum wave impedance approach. Other approaches,
namely, the classical method based on the direct solvi-
ng of the Schr�odinger equation and the transfer matrix
technique require much more e�ort. In this case, the
classical method implies constructing and solving two
determinants of 4 × 4 size, while within the transfer
matrix method we have to build three matrices of 2× 2
and then multiply them in a correct order.
What is the reason for this advantage? As we menti-

oned earlier, the main reason is that the solution of
the �rst order di�erential equation (for the quantum
wave impedance function) contains only one unde�ned
constant, while the second order (Schr�odinger) equati-
on has two unde�ned constants. Thus, a consecutive
calculation of quantum wave impedance is much easier
compared to a wave function calculation, because instead
of two matching conditions it is enough to use only one.
All this means that the quantum wave impedance

approach is a very e�cient tool for the calculation of
the probability amplitudes of the particle re�ection and
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transition, especially in the case of systems with many
wells and barriers, as well as for �nding the conditions
of resonant tunneling and bound states.
Concluding, we have to say that in general the appli-

cation of impedance models for quantum-mechanical
systems allows simplifying and generalizing the process
of studying these systems signi�cantly. This clearly can
be seen from articles [27�30].
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ÏÅÐÅÔÎÐÌÓËÞÂÀÍÍß ÇÀÄÀ×I ÂIÄÁÈÂÀÍÍß ÒÀ ÏÐÎÕÎÄÆÅÍÍß Â ÒÅÐÌIÍÀÕ
ÔÓÍÊÖI� ÊÂÀÍÒÎÂÎ-ÌÅÕÀÍI×ÍÎÃÎ IÌÏÅÄÀÍÑÓ

Î. I. Ãðèãîð÷àê
Êàôåäðà òåîðåòè÷íî¨ ôiçèêè iìåíi ïðîôåñîðà Iâàíà Âàêàð÷óêà
Ëüâiâñüêîãî íàöiîíàëüíîãî óíiâåðñèòåòó iìåíi Iâàíà Ôðàíêà,

âóë. Äðàãîìàíîâà 12, Ëüâiâ, Óêðà¨íà

Orest.Hryhorchak@lnu.edu.ua

Íà îñíîâi îäíîâèìiðíîãî ðiâíÿííÿ Øðåäèí åðà, ïåðåïèñàíîãî ç âèêîðèñòàííÿì ëîãàðèòìi÷íî¨
ïîõiäíî¨ âiä õâèëüîâî¨ ôóíêöi¨, áóëî îòðèìàíå íåëiíiéíå äèôåðåíöiàëüíå ðiâíÿííÿ ïåðøîãî ïîðÿä-
êó (òèïó Ðiêêàòi) äëÿ ôóíêöi¨ êâàíòîâî-ìåõàíi÷íîãî iìïåäàíñó. Ìíîæíèê, ùî ïîâ'ÿçó¹ ôóíêöiþ
êâàíòîâî-ìåõàíi÷íîãî iìïåäàíñó ç ëîãàðèòìi÷íîþ ïîõiäíîþ âiä õâèëüîâî¨ ôóíêöi¨, çàáåçïå÷ó¹ ïðî-
ñòèé i ôiçè÷íî çìiñòîâíèé âèãëÿä âèðàçó äëÿ ãóñòèíè ïîòîêó éìîâiðíîñòi, à ñàìå: ÿê äîáóòîê êâà-
äðàòà ìîäóëÿ õâèëüîâî¨ ôóíêöi¨ íà äiéñíó ÷àñòèíó ôóíêöi¨ êâàíòîâî-ìåõàíi÷íîãî iìïåäàíñó.

Ðîçãëÿíóòî ÿê çàäà÷ó ðîçñiÿííÿ, òàê i çàäà÷ó ïîøóêó çâ'ÿçàíèõ ñòàíiâ. Îáèäâi ïåðåôîðìóëüîâà-
íî â òåðìiíàõ êâàíòîâî-ìåõàíi÷íîãî iìïåäàíñó, à òàêîæ çíàéäåíî óìîâè äëÿ ïîøóêó âëàñíèõ ðiâíiâ
åíåð i¨ òà îòðèìàíî ôîðìóëè äëÿ àìïëiòóä ïðîõîäæåííÿ é âiäáèâàííÿ êâàíòîâî¨ ÷àñòèíêè âiä ïî-
òåíöiàëüíîãî áàð'¹ðà äîâiëüíî¨ ôîðìè.

Íåëiíiéíå äèôåðåíöiàëüíå ðiâíÿííÿ äëÿ ôóíêöi¨ êâàíòîâî-ìåõàíi÷íîãî iìïåäàíñó áóëî ðîçâ'ÿçàíå
äëÿ êîíñòàíòíîãî ïîòåíöiàëó. Ïðîäåìîíñòðîâàíî, ÿê âèêîðèñòàòè îòðèìàíi ðåçóëüòàòè â çàäà÷i ðîç-
ñiÿííÿ íà ïðÿìîêóòíîìó ïîòåíöiàëüíîìó áàð'¹ði. Çíàéäåíi âèðàçè äëÿ àìïëiòóä òà êîåôiöi¹íòiâ
ïðîõîäæåííÿ é âiäáèâàííÿ çáiãàþòüñÿ ç óæå âiäîìèìè ðåçóëüòàòàìè.

Îáãîâîðåíî ïåðåâàãè ïiäõîäó êâàíòîâî-ìåõàíi÷íîãî iìïåäàíñó ïîðiâíÿíî ç êëàñè÷íèì, çîêðåìà â
êîíòåêñòi çàñòîñóâàííÿ ÷èñåëüíèõ ìåòîäiâ äëÿ âèâ÷åííÿ ïîâåäiíêè êâàíòîâî¨ ÷àñòèíêè â ïîòåíöiàëàõ
çi ñêëàäíîþ ïðîñòîðîâîþ ñòðóêòóðîþ.

Êëþ÷îâi ñëîâà: ðiâíÿííÿ Øðåäèí åðà, êâàíòîâî-ìåõàíi÷íèé õâèëüîâèé iìïåäàíñ, ðîçñiÿííÿ,
òóíåëþâàííÿ.
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