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In this work, we employed the elegant tool of Bopp’s shift and standard perturbati-
on theory methods to obtain a new relativistic and nonrelativistic approximate bound state
solution of the deformed Klein-Gordon and deformed Schrédinger equations using the modi-
fied equal vector scalar Manning—Rosen plus a class of Yukawa potentials (DVSMCY-Ps, in
short) model. Furthermore, we have employed the improved approximation to the centrifugal
term for some selected diatomic molecules, such as Nz, I, HCl, CH, LiH, and CO, in the
symmetries of extended quantum mechanics to obtain the approximate solutions. The relativi-
stic shift energy AELY, (n,8,m,b, A, Vo,Vy,0,0,x,J,1,s,m) and the perturbative nonrelativistic
corrections AER. (n,8,n,b, A, Vo, Vy,0,0,x,7,1,s,m) appeared as a function of the parameters
(6,m,b, A, Vo, Vi), the parameters of noncommutativity (0, , x), in addition to the atomic quantum
numbers (n, j,l, s,m). In both relativistic and nonrelativistic problems, we show that the correcti-
ons to the spectrum energy are smaller than the main energy in the ordinary cases of relativistic
quantum mechanics and nonrelativistic quantum mechanics. A straightforward limit of our results
to ordinary quantum mechanics shows that the present result under DVSMCY-Ps is consistent with
what is obtained in the literature. In the new symmetries of noncommutative quantum mechanics, it
is not possible to get exact analytical solutions for [ = 0, and [ # 0 can only be solved approximately.
We have observed that the DKGE under the DVSMCY-Ps model has a physical behavior similar
to the Duffin—-Kemmer equation for meson with spin-1, it can describe a dynamic state of a particle
with spin-1 in the symmetries of relativistic noncommutative quantume mechanics.

Key words: Klein—Gordon equation, Schrodinger equation, Manning—Rosen potential, class of
Yukawa potentials, the diatomic molecules, noncommutative geometry, Bopp’s shift method and

star products.

DOI: https://doi.org/10.30970/jps.25.4301

I. INTRODUCTION

During the last decades, the research arena has wi-
tnessed great progress of outstanding scientific value
in various fields of physics and chemistry where many
exact and approximate solutions have been achieved for
the three fundamental equations in both nonrelativistic
and relativistic regimes. This is done in the domains
of low or high energies at microscopic and subatomic
scales by using the most popular methods such as the
Nikiforov—Uvarov method [1], the Wentzel-Kramers—
Brillouin method [2], the proper quantization rule [3],
the exact quantization rule [4] and in addition to many
other methods. The exact solutions of the fundamental
equations are only possible in some exceptional cases li-
ke the Harmonic oscillator and the Hydrogen atom as
a typical model. As for most of the cases considered
by researchers, it is done by approximate and numeri-
cal methods such as the Pekeris approximation [5], the
Greene and Aldrich approximation [6], the good approxi-
mation proposed by Yazarloo et al. in the study of the
oscillator strengths based on the M&bius square potential
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under the Schrédinger equation [7, 8|. Currently, physic-
ists in general and theorists in particular have developed
much interest in searching for exponential-type potenti-
als. The predominant reason for this is that this type of
potential has many different and important applications,
for example, the Manning—Rosen potential can be appli-
ed to various fields such as atomic, condensed matter,
particle, and nuclear physics in both relativistic and non-
relativistic regimes [9-12]. Furthermore, it is used to
describe the vibrations of diatomic molecules such as N,
I, HCI, CH, LiH, and CO [13]. Many authors have studi-
ed Manning-Rosen potential in the nonrelativistic case,
in both the s and I-waves cases (see, for example, [14—
15]). On the other hand, this potential was also studied
in the relativistic regimes of the Klein-Gordon and Dirac
equations [16-19].

The Yukawa potentials are another type of exponential
potentials [20] (also known as static screened Coulomb
potentials) that have received a great deal of attenti-
on, in many fields of physics such as nuclear phys-
ics, atomic physics, solid-state physics, and astrophys-
ics and they were studied in both relativistic and non-
relativistic quantum mechanics. They areused to descri-
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be the interactions of hydrogen-like atoms (such as He™
, Lit2 and Be™) and neutral atoms (such as ??Na , 12C,
and 1°8Au) [21-29].

Recently, there has been great interest in combin-
ing two or more potentials to have a large range of
applications, for example, the Manning—Rosen plus a
class of Yukawa potentials. In 2017, B. 1. Ita et al.
[30] studied the Dirac equation for the Manning-Rosen
plus a class of Yukawa potentials and Coulomb-like
tensor interaction. In the next year, H. Louis et al. [31]
analyzed the Klein-Gordon equation (KGE) under the
same potential but with both Pekeris-like approximation
of the Coulomb term and parametric Nikiforov—Uvarov
method. Very recently, A. I. Ahmadov et al. [32] studied
the Klein—Gordon equation under the linear combination
of Manning-Rosen and a class of Yukawa potentials us-
ing both the Nikiforov—Uvarov, SUSYQM methods and
the approximation scheme proposed by Greene and Ald-
rich, and obtained the relativistic energy spectrum for
any [-state and the corresponding radial wave functions.
This new combination is useful in studying the nucleus
deformed-pair interactions and spin-orbit coupling.

As a result of several considerations and many
physical problems apparat at the level of the
non-renormalizable electroweak interaction, the non-
regularization of quantum field theories, quantum gravi-
ty, string theory, where the idea of non-commutativity
resulting from properties of the deformation of space-
space (W. Heisenberg in 1930 was the first to suggest the
idea and then it was developed by H. Snyder in 1947) was
one of the major solutions to these problems. Researchers
have received great praise for this approach through
some related work [33-44]. Naturally, the topographi-
cal properties of the noncommutativity space-space and
phase-phase have a clear effect on the various physical

J

properties of quantum systems and this has been a very
interesting subject in many fields of physics as mentioned
previously.

In the last few years, we have investigated many
interesting studies concerned with the Yukawa potenti-
al in a nonrelativistic and relativistic state [45-49] due
to the importance of its applications in many fields, as
previously indicated. From what we have seen so far,
most of the studies concerning Manning—Rosen and the
class of Yukawa potentials were within the framework of
ordinary quantum mechanics.

The above works motivated us to investigate
the approximate solutions of the 3-dimensional
deformed Klein-Gordon equation (DKGE) and

deformed Schrédinger equation (DSE) for the modified
equal vector scalar Manning—Rosen plus a class of
Yukawa potentials (DVSMCY-Ps) model offered by
A. I. Ahmadov and his coworkers [32] in relativistic
quantum mechanics (RQM). The potential under study
can be applied to some selected diatomic molecules
such as (HCl, CH, LiH, and CO) in relativistic
noncommutative quantume mechanics (RNCQM) and
nonrelativistic noncommutative quantume mechanics
(NRNCQM) symmetries. Upon concuction more studies
in the microscopic scales, we hope to gain more sci-
entific knowledge of elementary particles in the field
of nano-scales. The relativistic and nonrelativistic
energy levels under the DVSMCY-Ps have not been
obtained yet in the RNCQM and NRNCQM symmetri-
es. We hope to find new applications and profound
physical interpretations using a new version model of
the DVSMCY-Ps, this potential modeled in the new
symmetries of noncommutative quantume mechanics
(NCQM) as follows:

— Vmcy (Tnc)

(1.1)

v (T) _ 1 77(,]7 _ 1) 672r/b B Aefr/b B Vbefﬁr B V0/6726r
mey oMb (1 _ e—r/b)2 1—e 1/t r r2
OVinsy (1) LO
= Vmcy (T) - T’I}:()? + 0 (@2) R
Sumey (1) = 1 AN —1)e 2/t B Be~ /b B Spe=°" B She=20r
ne 2Mb? (1- efr/b)2 1—e /b r r
0Smsy (1) LO
= Smcy (T) — TZ()§+O(@2) .

Here, Viney (1) and Smey (r) are vector and scalar
Manning—Rosen plus a class of Yukawa potentials in the
symmetries of ordinary quantum mechanics are given by
[32], @} = LO, the parameter b relates to the potenti-
al range, while A (B) and 7 ()) are four dimensionless
parameters, (Vy, V) and (Sp, S{) are the strengths of the
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D) — Smcy (Tnc)

(1.2)

(

class Yukawa potential, and its range is 1/6; ry. and r
are the distances between the two particles in NCQM and
QM symmetries. The coupling LO equals L, O3 + L,
O3 + L, ©13 with L., L, and L. representing the
usual components of the angular momentum operator L
in RQM and NRQM, while the new noncommutativity
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parameter ©;; equals 0;;/2. The new algebraic structure
of covariant noncommutative canonical commutations
relations (NCNCCRs) in the three representations of the
Schrodinger, Heisenberg, and interactions pictures, in the
new symmetry of NCQM, is as follows [50-60]:

[#amb] = [E5p0] = [#,5] = iheadp, (13)
[25x20] = [asd)] = [2)58)] = 0. (14)

It is important to note that Eq. (1.4) is a covari-
ant equation (the same behavior of 2*) under the
Lorentz transformation, which includes boosts and/or
rotations of the observer’s inertial frame. We generalize
the NCNCCRs to include the Heisenberg and interaction
pictures. It should be noted that, in our calculation, we

J

(f *h) (x) = exp (i 0007 (fh) (z) =

The indices p,v = 1,2,3 and O (6%) stands for the
second and higher-order terms of the NC parameter. On
the other hand, the choice of these combinations of the
Manning—Rosen plus a class of Yukawa potentials stems
from the fact that it exhibits an almost exact behavi-
or similar to the Morse [70] and Deng-Fan-Eckart [71]
potentials and so we considered it to be an excellent choi-
ce for the study of the atomic interaction for diatomic
molecules such as HCl, CH, LiH, and CO. Our current
work is structured in six sections. The first one includes
the scope and purpose of our investigation while the
remaining parts of the paper are structured as follows. A
review of the KGE with the equal vector scalar Manning—
Rosen plus a class of Yukawa potentials is presented
in Section II. Section III is devoted to studying the
DRKGE by applying the ordinary Bopp’s shift method
and improved approximation of the centrifugal term to
obtain the effective potential of DVSMCY-Ps. Besides,
via perturbation theory we find the expectation values of
some radial terms to calculate the energy shift produced
with the effect of the perturbed effective potential of
DVSMCY-Ps. Section IV is devoted to present the global
energy shift and the global energy spectra produced wi-
th DVSMCY-Ps in the RNCQM symmetries. In Secti-
on V, we determine the energy spectra of some selected
diatomic molecules such as (HCl, CH, LiH, and CO)
under DVSMCY-Ps in the RNCQM. In Section VI, the
summary and conclusion are presented.

(fh) (x) —

have used the natural units & = ¢ = 1. Here, fieg = h is
the effective Planck constant, 6., = €,,6 (6 is the non-
commutative parameter with the dimension of [length]2
which present the fluidity of the space, and €, is just
an antisymmetric number, for example €15 = —€9; = 1,
€13 = —€31 = l,€23 = —€32 = 1, €11 = €22 = €33 = 0),
which is an infinitesimal parameter if compared to the
energy values and elements of antisymmetric 3 x 3 real
matrices, and J,,,, is the Kronecker symbol. The symbol *
denotes the Weyl-Moyal star product, which is generali-
zed between two ordinary functions f(z)h(z) to the new
deformed form f(#)h(#) being expressed with the Weyl—
Moyal star product f(z) * h(z) in the symmetries of
NCQM as follows [57-69]:

et

0% fOT) g + O (67) . (1.5)

II. REVISED RKGE UNDER THE EQUAL

VECTOR SCALAR MANNING-ROSEN PLUS A

CLASS OF YUKAWA POTENTIALS MODEL IN
RQM

The 3-dimensional relativistic Klein-Gordon equation
(RKGE) with a scalar potential Syey (r) and a vector
potential Vi,qy () for the diatomic molecule with reduced
mass M and wave function is given as

( _A—|—(M+Smcy (T)Q) ) \IJ(T,G,(P) = 0. (2.1)
—(En — Viney (7))

The vector potential Vi,ey () is due to the four-vector li-
near momentum operator A" (Viey (7), A = 0) and the
space-time scalar potential Sy, () is due to the effect
of the mass M; E,; represents the relativistic energy
eigenvalues in 3-dimensions and [ represents the pri-
ncipal and orbital quantum numbers, respectively. The
Manning—Rosen plus a class of Yukawa potentials model
has spherical symmetry, allowing the solutions of the
time-independent RKGE of the known form ¥ (r, 6, ¢) =
U%(T)Ylm (0, ) to separate the radial U, () and angular
parts Y, (0, ¢) of the wave function ¥ (7,6, ¢) and A
is the ordinary 3-dimensional Laplacian operator. Thus,

Eq. (2.1) becomes:

2 En Vmc r
-t 2 e )
+M Spney (1) Uni (1) = 0. (2.2)
V20 (1) = 52 (r) — 1D
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The shorthand notation EJy> = M 2

7E72’l and V'erg(:y (T) = 2 (E"lv;nCy (’I’) + Msmcy ( )) Vn?lcy ( )+Sr2ncy ( )+l(l+1)7

r2

we obtain the following second-order Schridinger-like equation:

d2
(-

When the vector potential is equal to the scalar potential Vi, () = Smp

(E;;*;V VY (p ))) Uni (1) = 0.

(2.3)

(r), the effective potential of the Manning—

Rosen plus a class of Yukawa potentials reduces to the form:

Aefr/b

VA (1) = 2 (B + M) <2Mb2

(1—er/b)?

1 [n(n —1)e /b

—— (2.4)

Voe " Ve~ 2T I(14+1)
o - 2 + 2
r r r

A. 1. Ahmadov et al. [32] derived analytical expressions for the wave function and the corresponding energy values
for the vector and scalar Manning—Rosen plus a class of Yukawa potentials using the linear combination of Manning—
Rosen and a class of Yukawa potentials using both the Nikiforov—Uvarov, SUSYQM methods and the approximation

scheme proposed by Greene and Aldrich as follows:

Cnl . k,lr(n+2€nl+1)
nt (1 —g)"t = L Ry (=, 26, + 2 14 2e,58) Y™ 2.
(T 9;@) r ( ) n'F(2Enl+1) 2 1( n, 6nl+ knl"'na + Enlvs) 1 (07@)a ( 5)
MR — g2 2 —1(+1)—1/2—n(n+1) (2n+1)\/1/4+a2, +1(1+1) (2.6)
" n+1/24/1/d+a2, +1(1+1) n+1/2+/1/A+a2, +11+1)| '

where s = e~

200 gy = VA Ew b 124 /T/AT a2, 10+ 1), a

— En+M _ 20%(n=1) g2
- 125 V0147 V014 - M ) ﬁnl -

WVO%, Voos = 25 44 25V0, while o F7 (—n, 26,1 + 2k + 15 1+ 26, ) are the hypergeometric polynomials and

the normalization constant is given by [32]:

O = 20n! (epi + ki + 1) T (200 + 2k +n) T (26 + 1)
nh (kpi + 1) T (260 +n + 1) T (2kn + n) '

III. THE SOLUTION OF DRKGE UNDER THE
DVSMCY-Ps MODEL IN RNCQM SYMMETRIES

A. Review of Bopp’s shift method

At the beginning of this section, we shall give and
define a formula of the deformed equal vector scalar
Manning—Rosen plus a class of Yukawa potentials in
the symmetries of relativistic noncommutative three-
dimensional real space RNCQM symmetries. To achieve
this goal, it is useful to write the DKGE by applying the
notion of the Weyl-Moyal star product, which was seen
previously in Eqgs. (1.3), (1.4) and (1.5), to the differenti-
al equation that is satisfied by the radial wave function
Uni (r) in Eq. (2.3). Thus, the radial wave function in
RNCQM symmetries becomes as follows [72-79]:

(;:2 _ ( ERSY 4 ymey (; ))) «Un () =0. (3.1)

It is established extensively in the literature and in a
basic text [64, 75-80] that the star products can be si-
mplified from Bopp’s shift method. Physicist Fritz Bopp
was the first to consider pseudo-differential operators

4301-4

(2.7)

obtained from a symbol by the quantization rules x —
1

T — 55 and p — p+ 55~ instead of the ordinary

2 a

correspondence © — x and p — %% [80, 81]. In physics
literature, this is known as Bopp’s shifts. This quantizati-
on procedure is called the Bopp quantization. It is known
to the specialists that Bopp’s shift method [64, 79, 80]
has been applied effectively and has succeeded in si-
mplifying the three basic equations: DSE, DKGE, and
the deformed Dirac equation (DDE) with the notion of
star product, to the Schrédinger equation (SE), KGE,
and Dirac equation (DE) with the notion of ordinary
product, respectively. Thus, Bopp’s shift method is based
on reducing second-order linear differential equations of
DSE, DKGE, and DDE with star product to second-
order linear differential equations of SE, KGE, and DE
without star product with simultaneous translation in
the space-space. The CNCCRs with star product in Egs.
(1.3) and (1.4) become new CNCCRs without the notion
of star product as follows (see, e.g., [41-51]):

[ ;Suﬁs} = [A,El,plﬂ = [Z%varl/] :iheff(s,um (32)

[25,25] = [2],20] = [2,,4)] =0  (3.3)

W oty
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The generalized positions and momentum coordi-
nates (i&5,2),2),) and (p,p},p),) in the symmetries
of RNCQM are defined in terms of the corresponding

coordinates in the symmetries of RQM (xi, xf}, mL) and
(05, P}, p),) via, respectively [40-50]:

3

0
~(SHI) _ L(SHI) _ my (S,H,I)
T, =z, VEZI 5 Py , (34)
PEID = pSHD, (3.5)

This allows us to find the operator r2, equal 72 — LO
(see the Introduction) in NCQM symmetries [68, 69].

B. New effective potential in RNCQM symmetries

According to the Bopp shift method, Eq. (3.1) becomes
similar to the following like the Schrédinger equation (wi-
thout the notions of star product):

d2 _ M2 _ ETQL o l(l‘+1)
<d2 - ( l) he Uni (T) =0. (36)
r *QVmcy (rnc) (Enl + M)

1(1+1)

2
The

The new operators Viney (rnc) and are expressed

as in RNCQM symmetries as follows:

B 1 ( _1)6—2r/b Ae~T/b Ve o7 Ve 20" OVinsy (1) LO
Vmcy (Tnc) = b 77(;77677‘/17)2 _ 1766—7‘/?7 0 - ] 2 - or or + O (@2) (37)
M) - WD | e 40 (62)
So we can rewrite:
E,; + M 0V
Vmcy (Tnc) (Enl + M) = VmCy (T) (Enl + M) - : . (T) Lo + 0 (@2) ' (38)

Moreover, to illustrate the above equation in a simple
mathematical way and attractive form, it is useful to
introduce the following symbol, V"% (r), thus the radial
Eq. (3.6) becomes:

(jrz — (Beg” + Vieor (7“))) Uu(r)=0  (3.9)

with:

Viewett (1) = Veg™ (r) + Vert' () -

nc-eff p

(3.10)

Moreover, V27 (r) is given by the following relation:

1(1+1) Epnp + M 0Viy (1)

mcy _ _ Y

Vpert (T) - 7’4 L® r ar L@
+ 0 (e? (3.11)

It should be noted that Eq. (2.3) with the Manning—
Rosen plus a class of Yukawa potentials can be exactly
solved for [ = 0, but for the case [ # 0, A. I. Ahmadov
et al. had approximatively solved the equation using
Eq. (2.5) within the Greene—Aldrich approximation
scheme in RQM symmetries. In the new form of radi-
al Schrodinger-like equation written in Eq. (3.9), we
have terms including + , -5 and other Coulombic-like
terms, which make this equation impossible to solve
analytically for [ = 0 and [ # 0; it can only be solved

2r or

(

approximately. From this point of view, we can consi-
der the improved approximation of the centrifugal term
proposed by M. Badawi et al. [82]. This method proved
its power and efficiency when compared with the Greene
and Aldrich approximation [6]. The approximations type
suggested by (Greene and Aldrich) and Dong et al. for
a short-range potential is an excellent approximation to
the centrifugal term and allows us to get a second order
solvable differential equation. Unlike the approximation
used in the previous works [19, 30-32, 45, 49, 50, 79],
here we use:

452
=7 (3.12)
(1—s)
It is important to mention here that the above approxi-
mations are valid when dr < 1. This allows us to obtain:

1 250" 2651/2

r 1—e2r  1-—g’

1 452¢—20r

r2 (1 — e—20r)?

(3.13)

Now we rewrite the Manning-Rosen potential plus a
class of Yukawa potentials under the assumption of % =
26 as follows:

v 7 1 n (77 _ 1) 67457" A67§T
mcy (7’) - 2Mb2 (1 _ 672670)2 - 1_ 6_57,
Voefér V'0/672§r
- (3.14)
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After straightforward calculations, we obtain W%;Z(T)
as follows:

OVinsy (1)
or

_ 853 ( _1) 67457" N
= MTI n (1 _6_257,)2 (1

453A 6726r 453A 6745r

67667”
2
_ 6—257")

M 1 —e20r + M (1 B 6*257”)2 (3'15)
Ve —or Vv —or V —26r V/ —26r
T iy, F LURENN # AU
T T T T

We apply the approximations of Greene and Aldrich

to the expression Wma;j(r) and get the following formula

2 3

OVinsy (1) ~ s e s
or = )

5/2

s
3 +)\31

$3/2

(1—5s)

with A; = 883V + Mg, Ay = =820 (n — 1), A = 84 4
2Vpd2, Ay = 4V62 and A5 = 16V &3. This allows us to
write the second part of Eq. (3.11) as follows:

S

+ A
! (1-s)°

5 + A5 (3.16)

E,,+M 6Vmsy (T)

" o 26 (Ep + M) (3.17)
$5/2 7/2
" A1(175f +')‘2(1373)4
$3/2 2 $3
’%A3(175F *’A4(1isf +')‘5(173)4
By substituting Eq. (3.17) into Eq. (3.11), we fi-

nd the perturbed effective potential Vo7 () generated
from noncommutativity properties of space-space in the

symmetries of RNCQM as follows:

4301-6

1664 (1 + 1) s2

Voeri (1) = LO — 2§ (B, + M)  (3.18)
(1—s)"
)\1 (1 3 + )\2 s)
. . |Le+0(07).

+)\3(1 3)2 +)\4(1 s3 +>\5 S)

We have applied the approximations of Greene and
Aldrich to the term l(l%l) The Manning—Rosen potenti-
al plus a class of Yukawa potentials is extended

by including new terms proportional to the radial
52 5/2 $7/2 $3/2 2 $3
terms F=OEE )

(1875)3’ (1-5)* (1-s)*’ (liS)
to become the deformed Manning—Rosen potential plus
a class of Yukawa potentials in RNCQM symmetries.
The generated new effective potential V% (r) is also

3, and

proportional to the infinitesimal vector ©. This allows
us to consider Vo7 (r) to be a perturbation potenti-
al compared with the main potential V.3 (r) (parent
potential operator in the symmetries of RNCQM, that
is, the inequality Voo (1) < Vg (r) has been achi-
eved. That is, all the physical justifications for applying
the time-independent perturbation theory become sati-
sfied. This allows us to give a complete prescription for
determining the energy level of the generalized excited

states.

C. The expectation values in RNCQM symmetries

In this sub-section, we want to apply the perturbative
theory. In the case of RNCQM, we find the expectation

2 5/2 7/2 3/2
3 S S S S
values of the radlal terms % 9% (oo (o9

(li)g , and (1 )4 and take into account the wave functi-
on which we have seen previously in Eq. (2.5). Thus,
after straightforward calculations, we obtain the follow—

ing results:

s2dr
[2F1 (_na 2en + anl +n;1 + 2ep; 5)]2 10 (319)
(1-5s)
5/2 d
2Py (=, 2 + 2nt + 151+ 2603 8)] ﬁ (3:20)
s7/2 dr
21 (=1, 261 + 2k + 03 1+ 26,05 8)]° ——gp, (3.21)
(1-3)
$3/2dr
[2Fy (—n, 2601 + 2kng + 05 1+ 2,3 8))° T (3.22)
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52 n+oo 9 2 5 s2dr
(1—73)3 =Cn, / s¥ (1= 8)" [9F) (—n, 2ep; + 2kng + 15 1 + 22,5 )] - 3)37 (3.23)
(nlm) 0
+oo
53 s3dr
<(1 — 5)4 = / s2ent (1 — s)%"l [2F1 (—n, 260 + 2kpn; + 15 1+ 2655 s)]2 - 3)47 (3.24)
(nlm) 0

2
with C);, = [Cnl%] . We have used useful abbreviations (D) ,,,,) = (n,l,m D n,l,m) to avoid the extra

burden of writing equations. It should be noted that the above equations are a physical translation of the first-order
energy corrections that can generally be obtained by applying the following relationship known in the literature [83]:

+oo

V2 (M = [ (10,00 VR (1) (1,6,
0

Here, d3r = r?sin () dfdpdr. Furthermore, we have applied the property of the spherical harmonics, which has

the form [Y;™ (0,0) ;™ (0,¢)sin@ dfdp = 8jp0mm:. We have s = e=20" | this allows us to obtain dr = —ds

From the asymptotic behavior of s = ¢72°" when r — 0 (s — +1) and when r — 400 (s — 0), this allows us to
reformulate Eqs. (3.19)—(3.24) as follows:

+1
52 _
<(1—s)4> = Nr‘f"agvp/sk"’+1 (1-— s)zk’” 4 [0 F) (—n, 26,1 + 2kn + 15 1+ 2e4,; s)]2 ds, (3.25)
(ntm) 0

5/2 )
5 = Nmep [ 2enit3/2 (1 _ )23 [Py (—ny 26 + 2k + 15 1+ 26,05 9)])° ds, (3.26)
(1 - 8)3 (nlm)

o~—~—7~

+1
7/2
< 5 4> = N$$/52e7l1+5/2 (1- s)%"l_4 [2F1 (—n, 2601 + 2kny + 13 1+ 26, s)]2 ds, (3.27)
(1 a 8) (nlm) 0
s%/2 Wi 2k —2 2
= NP [ 2em+1/2 (1 _ )K= [ By (—n, 28, + 2k + 151+ 26005 8)]7 ds, (3.28)
(1-s)°
(nlm) 0
+1
s 2 1 2k, —3 2
; y = Ng?/s et (1 — 8)™ 7 o Fy (—n, 2601 + 2kng + 05 1+ 26,5 8)]” ds, (3.29)
( - S) (nlm) 0
41
83 mc 2€n1+2 2k, —4 2
T _ mep / G2t 2 (1 )20 LBy (Cpy 22 4 2k + 15 1+ 2205 8)) ds. (3.30)
(nim) 0

Here, NP — C—’gl. By using the same method as that proposed by Dong et al. [84] and applied by Zhang [85], we

new 2

calculate the integrals in Egs. (3.25)—(3.30). With the help of the special integral formula,

11
/Sg*l (1—5)7" " [2F1 (c1, o5 ¢3;8)])  ds = m 3l (c1,c2,05¢3,0 +651), (3.31)
0
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where 3Fy (c1,¢0,05¢3,0 +&;1) is obtained  from the generalized hypergeometric function
pFy (a1, a0,...,0p; 81,82, ..., 84 1) for p=3 and ¢ = 2 while I" (¢) denotes the usual Gamma function.
We obtain from Egs. (3.25)—(3.30) the results:
2 ' (2 +2)T (2kp; — 3
S — Nmep (Zen +2) T (ki )gFg(—n,Q+n,2knl—3;1+25nl,Q—1;1), (3.32)
(1—5) (nim) rQ-1)
5/2 T (2¢, 2) T (2ky; — 2
i = Nmep (2ent +5/2) T 2k = 2) 3Fy (=1, Q4+ n, 2k — 21+ 26, Q4+ 1/2; 1), (3.33)

T (Q+1/2)

— Nmep I (

2en + 7/2) T (2kn; — 3)

new

T(Q+1/2)

T'(2¢n +3/2)T (2kyn; — 1)

3Fo (—n, Q4+ n, 2k, — 3514 26,,, Q2+ 1/2;1), (3.34)

T(Q+1/2)

_ Nmep r (2‘5nl + 2) T (anl — 2)

new

T (Q)

—3)

3Fy (—n, Q4 n, 2k — 351 + 265, 25 1),

3By (=, Q4 1, 2k — 11+ 26,0, Q4+ 1/2:1), (3.35)
3Fo (=, Q4+ n, 2kn — 251+ 26, Q5 1),

(3.36)

(3.37)

where () (67777 ba Aa %7 V()/> = 2€em (67777b7 Aa VO> V()I) + 2k (65 m, b7 A7 Vba ‘/6)

D. The energy shift for the deformed equal vector
scalar Manning—Rosen plus a class of Yukawa
potentials in RNCQM symmetries

The global relativistic energy shift GRES for the
deformed equal vector scalar Manning—Rosen plus a
class of Yukawa potentials in RNCQM symmetries is
composed of three principal parts. The first one is
produced from the effect of the generated spin-orbit
effective potential. This effective potential is obtained
by replacing the coupling of the angular momentum
operator and the noncommutative vector LO with the
new equivalent coupling OLS (with 62 = 02, + 02, +
©%,). This degree of freedom came considering that
the infinitesimal noncommutative vector © is arbi-
trary. We have chosen it to a parallel of the spin S
of the diatomic molecules under the deformed equal
vector scalar Manning-Rosen plus a class of Yukawa
potentials. Furthermore, we replace the new spin-orbit
coupling OLS with the corresponding physical form

4301-8

(

(0/2) G?, with G2 = J2—L*—S?. Moreover, in quantum
mechanics, the operators H™<Y J2 L2 82 and J, form
a complete set of conserved physics quantities, the ei-
genvalues of the operator G2 equal the values k (5,1, s) =
GG +1) =1l +1) =s(s+1)] /2, with [I—s] < j <
|l 4 s|. As a direct consequence, the partial energy shift
AER., (n,0,1,b, A, Vo, Vy, 0, 4,1, s) due to the perturbed
effective potential V o1 () produced for the n excited
state, in RNCQM symmetries is as follows:

AEISI?Cy (n7 67 17’ b7 A’ ‘/0, V0,7 ®7j7 l? S)
=0+ —-I(l+1)—s(s+1)) (3.38)
X (2 (i, (10,0, A, Vo, V§) .

The global expectation value <E>&I\l/lﬁ)\( (n,0,m,b, A,

Vo, V§) is determined from the following expression:
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(3.39)

$7/2 $3/2 2 3
I Y e e T T € R vy (s
(1 a 8) (nlm) (1 - 8) (nlm) (1 o S) (nlm) (1 o S) (nlm)

The second part of the new effective potential
Voode(r) is obtained from the magnetic effect of
perturbative effective potential V.27 () under the
deformed equal vector scalar Manning—Rosen plus a class
of Yukawa potentials. This effective potential is achi-
eved when we replace both LO and ©;2 with (¢BL,
and oB), respectively; here, B and o symbolize the
intensity of the magnetic field induced by the effect of
deformation of space-space geometry and a new infini-
tesimal noncommutativity parameter, so that the physi-
cal unit of the original noncommutativity parameter 15
is [length]? is the same unit of o B. We also need to apply
(', U',m' L, n,l,m) = MOpym0yi0nm ( = < m/ < 1
and —I <'m < [). All of this data allows for the discovery
of the new energy shift AERE (n,d,n,b, A, Vo, Vg, 0,m)
due to the perturbed Zeeman effect, which is created
by the influence of the deformed equal vector scalar
Manning—Rosen plus a class of Yukawa potentials for the
nth excited-state in RNCQM symmetries, as follows:

AER8 (n,8,m,b, A, Vo, Vg, 0,7,1,5)

mcy

(3.40)

=B (E)FMY (5, 6,10, A, Vy, V) m.

(nlm)

Vmcy—rot (7“) _ 1654l (l + 1) XSQ

pert

Now, for our purposes, we are interested in findi-
ng a new third automatically important symmetry
for the deformed equal vector scalar Manning-Rosen
plus a class of Yukawa potentials at zero temperature
in RNCQM symmetries. This physical phenomenon
is induced automatically from the influence of the
perturbed effective potential V)oY (r), which we have
seen in Eq. (3.18). We discover these important physi-
cal phenomena when our studied system consists of
non-interacting particles and is considered as the Fermi
gas. It is formed from all the particles in their gaseous
state (HCl, CH, LiH, and CO) undergoing rotation
with angular velocity €2, if we make the following two
simultaneous transformations to ensure that previous
calculations are not repeated:

O —-x and LO — xLQ. (3.41)

Here, x 1is just infinitesimal real proportional

constants. We can express the effective potential
Vot ™" (r) which induced the rotational movements of

the diatomic molecules as follows:

X 10— 26 (B + M) (3.42)
(1—s)
5/2 7/2 3/2 2 3
NI (VIR VL VD VWS I ) PSS N W — Y X1
A—s” a-s' Ca-s a-s Y-

To simplify the calculations without compromising physical content, we choose the rotational velocity €2 parallel
to the Oz axis. Then we transform the spin-orbit coupling to the new physical phenomena as follows:

XS ()L =xf(s)QL.

with

§5/2

4 52
£(s) = 16647 (1 + 1)

(3.43)

5712 5
+ A3

— 26 (Ep + M) </\1

(1-s) (1-s)

+ A
-t

3/2 52 $3
TR e A 8)4> (3.44)
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All of this data allows for the discovery of the
new energy shift AELT (n 8, n,b, A, Vo, Vy,x,m) due

mcy

to the perturbed Fermi gas effect VoY O (1), which is

generated automatically by the influence of the deformed

equal vector scalar Manning—Rosen plus a class of

Yukawa potentials for the ground state and the first exci-

ted state in RNCQM symmetries as follows:
AERS (n, 8,1, b, A, Vo, Vg, x,m)

mcy

(3.45)

= X (E) (i, (78,1, A, Vo, V) Qm.

It is worth mentioning that K. Bencheikh et al. [86,
87| studied rotating isotropic and anisotropic harmoni-
cally confined ultra-cold Fermi gas in a two and three-
dimensional space at zero temperature, but in that
study, the rotational term was added to the Hamiltonian
operator, in contrast to our case, where this rotational
term x f(s)LQ automatically appears due to the large
symmetries resulting from the deformation of space-
phase.

IV. RESULTS AND DISCUSSION

In this section, we summarize our obtained results
AV iy (nv 57 , bv Aa VOv VE)/a jv lv 8)7 AE{E&%(% 53 7, b7 Av VOv

mcy
Vg, m), and AEé;g;t (n,68,m,b, A, Vo, Vg, m) for the n'h
excited state due to the spin-orbit coupling, the modi-
fied Zeeman effect, and modified Fermi phenomena

induced by Vo7 (r) due to the superposition princi-

J

B (n’67n7b7Aa‘/05 V0/7670-aXajal75am)

r-nc

ple. This allows us to deduce the additive energy shift
AERY (n,0,1,b, A, Vo, Vg, 4,1, s,m) under the influence
of DVSMCY-Ps in RNCQM symmetries as follows:

AEtOt (n’6’n’b’A7‘/0"/876)07X’j7l)87m)

mcy

= (2)IMOX (0, 6,1,b, A, Vo, V)

(nlm)

(4.1)

X (0Ok (4,1,8) + o B +mxQm) .

The above results present the global energy shift,
which is generated with the effect of noncommutati-
vity properties of space-space; it depended explicitly
on the noncommutativity parameters (0O,0,x), the
parameters of the equal vector scalar Manning—Rosen
plus a class of Yukawa potentials (n,b, A, Vp,V{) in
addition to the atomic quantum numbers (j,1,s,m).
We observed that the obtained global effective energy
under DVSMCY-Ps has a carry unit of energy because
it consists of the carrier of energy (M? — E2; ). In the
symmetries of RNCQM, as a direct consequence, the

new generalized excited relativistic energy states
EXSY (n,6,m,b, A, Vo, Vi, 4,1, 8,m) produced with

DVSMCY-Ps, are the sum of the square roots of the shift
energy [AELY (n,d,m,b,A,Vo,V§,0,0,x,7,1,5,m)] 1/2

mcy
and the usual relativistic energy FE,; due to the effect of
the equal vector scalar Manning—Rosen plus a class of
Yukawa potentials in RQM symmetries in Eq. (2.8), as

follows:

For the ground state and first excited state, the above equation can be reduced to the following form:

Emcy (n = 07 67 777 b7 A’ VO7 ‘/O/’ (—)70-’ X7j7 l7 S7m)

r-nc

(nlm)

and

(4.2)
1/2
= B+ [(E) (o (16,1, 0, A, Vo, Vi) (OF (7 1, ) + o Bm + mxQm)]
(4.3)
1/2
= Bou+ [(Z)(himy (1= 0,8,1,b, 4, V0, V§) (Ok (ji L, 5) + o Bm + mxQm)
(4.4)

Dred (7‘L = 1a57773b7Aa Vba Vd,@,a,x,j,l,s,m)

r-nc

RMCY

= Ell + <E>(nlm) (Tl = 1757773[)7 Aa ‘/07V0/) (@k (j,l,S) +oBm + mXQm)

}1/2.

Equation (4.4) describe the relativistic energy of some diatomic molecules such as HCl, CH, LiH, and CO under
the deformed equal vector scalar Manning—Rosen plus a class of Yukawa potentials in RNCQM symmetries.

4301-10
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A. Relativistic particular cases under

MESVEMHPs

After examining the bound state solutions of any
l-state deformed Klein—-Gordon equation with the
deformed equal vector scalar Manning—Rosen plus a class
of Yukawa potentials in RNCQM symmetries, our task is
now to discuss some particular cases below. By adjusting
potential parameters for each case, some familiar potenti-
als, which are useful for other physical systems, can be
obtained.

(1) Upon setting Vy and Vj to zero, the potential in

J

C166%(1+1) 82

Vi ) =

863 s°/2 86°
X <—77(77— 1) ——g - —n(n-1)

M (1-s)? M

LO — 20 (E™P + M)

Eq. (2.1) turns into the deformed equal vector scalar
Manning-Rosen [16] in RQM symmetries, as follows :

1 77(77_ 1) e—2r/b Ae—T/b

Vmp (7") = 2Mb2 (1 o e*’l’/b)2 - 1 _ efr/b

.(4.5)

The perturbed effective potential Vjoi¥ (r) in Eq.

(3.18) turns to the perturbed effective potential V of (r)
in the symmetries of RNCQM as follows:

(4.6)

s7/2 863A s3/2

(1—3)4+ 7 (1_8)2>L6+O(®2).

In this case, the additive energy shift AE;?E (n,d,n,b, A, 4,1, s,m) under the modified influence of the equally mixed
Manning—Rosen potentials in RNCQM symmetries is determined from the following formula:

AEIFI(I)IE (n7 57 777 b7 A’ 63 0—7 X?j? l’ 57 m) = <E>?':Ll\l/l7f:)

Thus, the corresponding global expectation value (E}&l\l/{nlj)

(nlm)

(E)army (n,0,7,0, A) = 1651 (1 +1) <

(1—s)"

383 m-1) $5/2 $7/2
=== (n— — S e +
M nn (1 - 8)3 (nlm) (1 - 8)4 (nlm) M

(n,d,n,b, A) is determined from the following expression:

> 26 (E™ + M) 4.7)
(nlm)

853 A < §3/2 >
2
(1 - S) (nlm)

The new relativistic energy in Eq. (4.2) reduces to the new energy E™P (n,d,n,b, A, Vo, Vy,0,0,x,4,1,s,m) under

r-nc

the modified equal scalar and vector new Manning—Rosen potential in RNCQM, as follows:

ETR (TL, 6,7’],[),14,%, ‘/6/7@70-7Xaj7l757m) = E:SP +

r-nc

_ 1/2
<‘:>511\l/l7:) (TL, 57 n, ba A)
(Ok (4,1, s) + o Bm + mxQm)

Making the corresponding parameter replacements in Eq. (2.8), we obtain the energy equation for the Manning—
Rosen potentials in the Klein—-Gordon theory with equally mixed potentials, in RQM symmetries as :

2
mp2
At g2 | B U+ —12-n(m+1) Cntl) \/1/4+anzp +i(+1) (18)
" n+1/24+1/d+a2, +1(+1) n+1/2+/1/d+a2,+1(1+1)|
[
where agllﬂ = (E}P+M) W and 62}"2 = of Yukawa potentials in RQM symmetries, as follows:

(EXP 4+ M) %2, It should be noted that the result
recorded in Eq. (4.9) is consistent with the results of

our research in Ref. [88].

(2) Upon setting n and A to zero, the potential in
Eq. (2.1) turns into the deformed equal vector scalar class

%6—67' ‘/36—2(%

Veyp (1) = — 5 (4.9)

T T

The perturbed effective potential V27 (r) in
Eq. (3.18) turns into the perturbed effective potential

Visart (r) in the symmetries of RNCQM as follows:
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4 2 3 5/2 2 3/2 2.2 /53 .3
_ 165(i(l —&—)}l)s Lo — 25 (B 1 M) <86 Vos 2,625 4Vp62s2 16V 8%s
— S

Voert (1) G-s® @ -sf a-s (-9

pert

) LO. (4.10)

In this case, the additive energy shift AEE;B (n,d, Vo, Vi, 4,1, s,m) under the influence of the modified equally mixed

class of Yukawa potentials in RNCQM symmetries is determined from the following formula:

AER (n,8,Vo, V5, 0,0,x, 4.1, 8,m) = (Z)fey (1n,8,1,b, A) (O (4,1, 5) + 0B +mxQm).

(nlm)

Thus, the corresponding global expectation value (E)&l\ﬁs) (n,d,m,b, A) is determined from the following expression:

2
(E) iy (0,8, Vo, V) = 16641 (1 + 1) <(1j8)4> — 46% (B + M) (4.11)
(nlm)

$5/2 $3/2 2 / 3
NPTy TNTT iy TNy T\
(nlm) (nlm) (nlm) (nlm)

The new relativistic energy in Eq. (4.2) is reduced to the new energy E™F (n,d, Vo, Vy, 0,0, X, 4,1, s,m) under the

r-nc
modified equal scalar and vector new Manning—Rosen potential in RNCQM, as follows:

—\RCYP 1/2
<':‘>(nlm) (nv 4, Vo, VO/)

EI(':};}I()] (n7 57 %7 ‘/0/7 @) U7 X? 970—7 X?j’ lV SVm) = E:]}l’p +

(®k (4,1,s) + oBm + mxQm)

Making the corresponding parameter replacements in Eq. (2.8), we obtain the energy equation for the class of
Yukawa potentials in the Klein—Gordon theory with equally mixed potentials, in RQM symmetries as:
(ESP4+M)Vo—i(14+1)—1/2 77

nl

n+1/244/1/4+1(1+1)

—n(n+1)—(2n+1)/1/4+1(1+1)

n41/244/1/4+1(1+1)

M? — EP? = 52

nl

V. NONRELATIVISTIC SPECTRUM UNDER DVSMCY-Ps

In this section, we want to derive the nonrelativistic spectrum, which is produced with the effect of the deformed
Manning—Rosen plus a class of Yukawa potentials for the diatomic molecules such as HCl, CH, LiH, and CO.
From Eq. (1.1), we can write the modified Manning—Rosen plus a class of Yukawa potentials in the nonrelativistic
noncommutative three-dimensional real space NRNCQM symmetries as follows:

- 1 n (77 _ 1) e—2r/b Ae—r/b Voe—67" Vole—Qér e
Vae™ (1) = 2M b2 (1 — e*r/b)2 T 1o r T2 + Vnr-pyert (r), (5.1)

where Vprgfg’ (r) is the perturbative potential in nonrelativistic noncommutative three-dimensional real space
NRNCQM symmetries:

1(1+1) oVmey (r) LO 2
L e P + 0 (©?). (5.2)

‘/Iﬁ"q—cpyert (T) =

The first term is due to the centrifugal term l(i%l) in NRNCQM [Eq. (3.7)], which equals the usual centrifugal

term l(%l) plus the perturbative centrifugal term l(lrtl)L@, while the second term in Eq. (5.2) is produced with the

effect of the deformed Manning—Rosen plus a class of Yukawa potentials. We have applied the approximations type
suggested by Greene and Aldrich and Dong et al. to a short-range potential that is an excellent approximation to the

centrifugal term for the Manning-Rosen plus a class of Yukawa potentials, and we calculate % [see Eq. (3.18)].
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Now, substituting Eq. (3.16) into Eq. (5.2) we apply the approximation to Eq. (3.12), and we get the perturbative
potential in NRNCQM symmetries as follows:

16641 (1 + 1) 52

Vit () = =

nr-pert

LO (5.3)

$5/2 §7/2 $3/2 2 3
— 0\ 3+)\2 4+)\3 2+)\4 3+>\5
(1—-13s) ( s (1-s

1—s

1—s) (1—s) -

)4> LO + 0 (0?).

3/2 2

s°/2 s7/2 s s s3
07 oo™ (97 o) and oo to find the

nonrelativistic energy corrections produced with the perturbative potential Vnril_cpyert (r). By using the expectations

values obtained in Egs. (3.32)-(3.37) for the n'" excited state we get the corresponding global expectation values
<E>NRMCY (TL, 5, 773 b7 A7 ‘/O, VO/) as fOuOWS:

(nlm)

Thus, we need to know the expectation values of (1f28)4,

—S)

$5/2 §7/2
( o S) (nlm) ( N S) (nlm)

$3/2 2 $
Kl R P s R
( o S) (nlm) ( o S) (nlm) ( a S) (nlm)

By following the same physical methodology that we used in our previous relativistic study, we obtain the energy
corrections AER.(n,d,1,b, A, Vo, Vi, 0,0,x,4,1,5,m) for the n'h excited state due to the spin-orbit complying, the
modified Zeeman effect, and the nonrelativistic perturbed Fermi gas potential, which is induced by the influence of

DVSMCY-Ps in NRNCQM symmetries, as follows:

2
(B iy (0, 8,1,b, A, Vo, V) = 16641 (1 + 1) <<1 i 4>
(nlm)

AEnr <n7 6’ "77 b7 A7‘/YO"/H7®’ 0-7 X’j7 l’ 87 m) (5-5)

mcy

= (E)nimy * (0,8,1,b, AV5, V{) (Ok (j, 1, 8) + 0 B + mxQm)

(nlm)

As a direct consequence, the new nonrelativistic energy ENY . (n,d,n,b, A, Vo, Vy,0,0,%, 7,1, s, m) produced with
DVSMCY-Ps, in the symmetries of NRNCQM, corresponding the generalized excited states; the sum of the energy
corrections AER (n,d,1n,b, A, Vo, Vy,0,0,x,J,1,s,m) plus the nonrelativistic energy E?} produced with the main

mcy

part of potential in Eq. (1.1) in NRQM are as follows:

Emcy (n)67"7’ b)A"/O’VO/7@7O.7X7j7 l) 87m) (5-6)

r-nc

= BN+ (E) iy (n,6,0,b, AVo, V7)) (O (5.1, 5) + 0B + mxQm) .

The nonrelativistic energy F; due to the effect of the Manning-Rosen plus a class of Yukawa potentials in NRQM
is determined directly from the study of B. I. Ita et al. [89] given by:

2uC

o?

2 [ 2uV
gf:-é( F2 1+ 12 |20+ 1/2)° -

2
+(n+1/2)2—2'l;‘/0—2/;v1+(2n+1)7} ) (5.7)
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With 7 = /(1 +1/2)? RPN}
Vo—=0,D— —n(n-— )V2—>VO,C—>AandV1—>V0
to match the notations used in the two references are
identical.

Now, considering composite systems such as molecules
made of N = 2 particles of masses m,, (n = 1,2) within
the frame of noncommutative algebra, it is worth taking
into account features of descriptions of the systems in
the space. In NRQM symmetries, it was obtained that
composite systems with different masses are described
with different noncommutative parameters [90-93]:

2;1.0 2uVo 2uVy
e

[#nsd)] = [252)] = [2,381) = 65,

where the noncommutativity parameter ¢y, is given by:

As is mentioned above, in the case of a system
of two particles with the same mass m; = mo

such as the homogeneous (No and Ip) diatomic

molecules @E]f,) = O, and a() = o0,,. Finally,

we can generalize the nonrelat1v1stic global energy
EZY (n,6,m,b, A, Vo, V5, 4,1, 8,m) under the modified
Morse potential considering that composite systems
with different masses are described with different
noncommutative parameters for the diatomic (HCl, CH,

LiH, and CO) as

E;nrfg (n 5 nvb A %7‘/37‘7.’175 m)
= B3+ (Dt (18,1, b, AV, V)
X (0°k (4,1,5) + 0B +mx“Qm) .

(5.10)

(nlm)

The KGE is the most well-known relativistic wave
equation describing spin-zero particles, but its extensi-
on in RNCQM symmetries, DKGE, under the modified
Manning—Rosen plus a class of Yukawa potentials model
has a physical behavior similar to the Duffin-Kemmer
equation for meson with spin-1; it can describe a dynamic
state of a particle with spin one in the symmetries of
relativistic noncommutative quantum mechanics. This is
one of the most important new results of this research. It
is worth mentioning that for the two simultaneous limits
(©,0,x) and (©¢,0¢, x°) — (0,0), we recover the results
of the in Refs. [32, 90].
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with u, = S , the indices (n = 1,2) label the parti-

cles, and foﬁ is the parameter of noncommutativity,
corresponding to the particle of mass m,. Note that
in the case of a system of two particles with the same
mass m; = my such as the homogeneous (Ny and Ip)
diatomic molecules, the parameter Qfﬁ,) = 0. Thus, the
two parameters © and o which appears in Eq. (5.8) are
changed to the new form:

VI. SUMMARY AND CONCLUSION

In this work, we have found approximate bound state
solutions of DRKGE and DNRSE using the tool of
Bopp’s shift and standard perturbation theory methods
of the deformed equal vector scalar Manning-Rosen
plus a class of Yukawa potentials in both relativistic
and nonrelativistic regimes, which correspond to hi-
gh and low energy physics. We have employed the
improved approximation scheme to deal with the centri-
fugal term to obtain the new relativistic bound state
solutions E™Y (n,d,n,b, A, Vo, Vy§,0,0,x,7,1,8,m)
corresponding to the generalized excited states
that appear as a sum of the total shift energy
AER (n,0,1,b, A, Vo, V5,0,0,x,4,1,5,m) and  the
relativistic energy FE,; of the equal vector scalar
Manning—Rosen plus a class of Yukawa potentials.
Furthermore, we have obtained the new nonrelativistic
global energy of some diatomic molecules, such as Na,
I,, HCI, CH, LiH, and CO, in NRNCQM symmetries as
a sum of the nonrelativistic energy and the perturbative
corrections. The total shift energy and the perturbative
corrections appear as a function of the discreet atomic
quantum numbers (n, j,1, s, m), the potential parameters
(6,m,b, A, Vp, V) in addition to three noncommutativity
parameters (0,0, x). This behavior is similar to the
perturbed both modified Zeeman effect and modified
perturbed spin-orbit coupling in which an external
magnetic field is applied to the system and the spin-
orbit couplings which are generated with the effect of
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the perturbed effective potential in the symmetries of
RNCQM and NRNCQM. Furthermore, we can conclude
that the DKGE under the DVSMCY-Ps model becomes
similar to the Duffin—-Kemmer equation for meson with
spin-1; it can describe a dynamic state of a particle with
spin one in the symmetries of RNCQM. Furthermore,
we have applied our results to composite systems
such as molecules made of N = 2 particles of masses
my, (n =1,2). It is worth mentioning that, for all cases,
when to make the two simultaneous limits (0, o, x) and

(©°,0%x°) — (0,0,0), the ordinary physical quantities
are recovered. Furthermore, our research findings could
also be applied in atomic physics, vibrational and
rotational spectroscopy, mass spectra, nuclear physics,
and other applications. Finally, given the effectiveness
of the methods that we followed in achieving our goal in
this research, we advise researchers to apply the same
methods to delve more deeply, both into the relativistic
and nonrelativistic regimes for others potentials.
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HOBI PO3B’SI3KMU IJI51 3B’I3AHNX CTAHIB JE®@OPMOBAHUIX PIBHAHDb KJISIMHA-TOPIOHA
TA IIIPEIVHI EPA JJISA JOBLJIBHOI'O L-CTAHY 3 MOJAN®IKOBAHMUI PIBHUMMN
BEKTOPHUM I CKAJISIPHUM IIOTEHIIIAJIAMU MEHHIHI'A-PO3EHA IIJIIOC KJIAC

IIOTEHIIIAJIIB IOKABU B CUMETPISIX PEJISTUBICTCBHKOI TA HEPEJIATUBICTCBHKOI
HEKOMYTATUBHOI KBAHTOBOI MEXAHIKU

Abpemsmamkia Maiipenr
Jabopamopia $izuxu ma Timii mamepianis, Pizuune 61ddisenma,
Daxyavmem npupodnuvuT nayk, Ynisepcumem Mciau, Mcina, Anocup (BP 239 Ile6inia-Mcina, Anorcup)
abdelmadjid.maireche Quniv-msila.dz

VY miit pobori MM BHKOpHCTAIW €€raHTHUU iHCTPyMeHT 3CcyBy DBomnma Ta craHmapTHi MeTomm Teo-
pii 30ypeHb [ OTPUMAHHSA HOBOI'O PEISITUBICTCHKOIO fi HEPETSATHUBICTCHKOIO HAOJMKEHOrO PO3B’I3KY
3R’s13ammx cramis medopmosanux pisusHb Koasitna-Topmona ta Illpemmarepa 3 BUKOPHCTAHHSIM MO-
mmikOBaHUX BEKTOPHOrO i ckajsgpHoro morenmiamgiB Menninra—Posena mioc kimac morenmiamis FOka-
Bu (ckopouerno DVSMCY-Ps). Kpim toro, mu 3acrocyBasu mosiniiene HaGJIMKEHHS 10 BLANEHTPOBO-
ro 4ieHa Jiisl JesiKuX BHOPAHUX JBOATOMHUX MOJekys, sk-01T: No, Io, HCl, CH, LiH ra CO, y cume-
TPisIX PO3IMUPEHOI KBAHTOBOI MEXAHIKU IJIs OTPUMAaHHS HAOJMKEHUX pPO3B’s3KiB. EHepris pemsTusict-
CbKoro3cyBy‘Alﬂﬁ%(n,éﬂﬁb,AﬁV@,VH,@,U,X,jJ,s,WU Ta nepTypOATUBHI HEPEIATUBICTCHKI MOMPaBKU
AER, (n,0,1,b, A, Vo, Vi, 0,0, x, 4,1, s, m) susnsiorses Gynkiiamu napamerpis (6,7, b, A, Vo, Vy), napa-
merpiB Hekomyrarusaocti (0,0, X), Ha JOJATOK JI0 ATOMHUX KBaHTOBUX umced (n,j,l,s,m). 1 B pensiru-
BICTCHKUX, i B HEPETATUBICTCHKUX 33/Ia9aX MM TTOKA3YEMO, IO TIOTIPABKY Ha, €HEPTilo CIIEKTpa MEHII 34,
OCHOBHY B 3BUYAMHUX BUIMAIKAX PEIATUBICTCHKOI Ta HEPEJIATHBICTCHKOI KBAHTOBOI MEXAHIKH. Y TPAHUIIL
3BUYaiHOl KBaHTOBOI Mexaniku Hami pesysabratu fAig DVSMCY-Ps y3romkyoTbcsa 3 TuM, MO OTpUMA-
HO B jireparypi. Y HOBUX CHMETPidX HEKOMYTATUBHOI KBAHTOBOI MEXAHIKM HEMOKJIUBO OJEPKATU TOYHL
anasituani po3s’s3ku mist | = 0, a | neq0 moxkua po3s’s3aru juine npudan3no. Mu momituiu, mo ae-
dbopmosane pisuanus Kisitna-Topaona 3 momemmo DVSMCY-Ps mae disuuny noseminky, momiGHy 10
piBusuuaa Jladdina—Kemmepa s me30na 3i cmiroM 1, BOHO MOKe OMUCYBATH JUHAMITHAN CTAH YaCTUHKH
31 cmiHoM 1 y cuMeTpiax pelsaTHBICTCHKOI HEKOMYTATHBHOI KBAHTOBOI MEXaHIKM.

Kurogosi ciosa: pisnsinas Kasitna-Topaona, pisusaus Ipeauarepa, norenmian Manninra—Pozena,
kiac noredrianis KOkaBu, 1BOATOMHI MOJIEKY/TH, HEKOMYTATHBHA MeOMETPist, MeTox 3cyBy Bormma ta 3ip-
KOBi TOOYTKH.
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