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In this work, we employed the elegant tool of Bopp's shift and standard perturbati-
on theory methods to obtain a new relativistic and nonrelativistic approximate bound state
solution of the deformed Klein�Gordon and deformed Schr�odinger equations using the modi-
�ed equal vector scalar Manning�Rosen plus a class of Yukawa potentials (DVSMCY-Ps, in
short) model. Furthermore, we have employed the improved approximation to the centrifugal
term for some selected diatomic molecules, such as N2, I2, HCl, CH, LiH, and CO, in the
symmetries of extended quantum mechanics to obtain the approximate solutions. The relativi-
stic shift energy ∆Etot

mcy (n, δ, η, b, A, V0, V
′
0 ,Θ, σ, χ, j, l, s,m) and the perturbative nonrelativistic

corrections ∆Enr
mcy (n, δ, η, b, A, V0, V

′
0 ,Θ, σ, χ, j, l, s,m) appeared as a function of the parameters

(δ, η, b, A, V0, V
′
0 ), the parameters of noncommutativity (Θ, σ, χ), in addition to the atomic quantum

numbers (n, j, l, s,m). In both relativistic and nonrelativistic problems, we show that the correcti-
ons to the spectrum energy are smaller than the main energy in the ordinary cases of relativistic
quantum mechanics and nonrelativistic quantum mechanics. A straightforward limit of our results
to ordinary quantum mechanics shows that the present result under DVSMCY-Ps is consistent with
what is obtained in the literature. In the new symmetries of noncommutative quantum mechanics, it
is not possible to get exact analytical solutions for l = 0, and l 6= 0 can only be solved approximately.
We have observed that the DKGE under the DVSMCY-Ps model has a physical behavior similar
to the Du�n�Kemmer equation for meson with spin-1, it can describe a dynamic state of a particle
with spin-1 in the symmetries of relativistic noncommutative quantume mechanics.
Key words: Klein�Gordon equation, Schr�odinger equation, Manning�Rosen potential, class of

Yukawa potentials, the diatomic molecules, noncommutative geometry, Bopp's shift method and
star products.
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I. INTRODUCTION

During the last decades, the research arena has wi-
tnessed great progress of outstanding scienti�c value
in various �elds of physics and chemistry where many
exact and approximate solutions have been achieved for
the three fundamental equations in both nonrelativistic
and relativistic regimes. This is done in the domains
of low or high energies at microscopic and subatomic
scales by using the most popular methods such as the
Nikiforov�Uvarov method [1], the Wentzel�Kramers�
Brillouin method [2], the proper quantization rule [3],
the exact quantization rule [4] and in addition to many
other methods. The exact solutions of the fundamental
equations are only possible in some exceptional cases li-
ke the Harmonic oscillator and the Hydrogen atom as
a typical model. As for most of the cases considered
by researchers, it is done by approximate and numeri-
cal methods such as the Pekeris approximation [5], the
Greene and Aldrich approximation [6], the good approxi-
mation proposed by Yazarloo et al. in the study of the
oscillator strengths based on the M�obius square potential

under the Schr�odinger equation [7, 8]. Currently, physic-
ists in general and theorists in particular have developed
much interest in searching for exponential-type potenti-
als. The predominant reason for this is that this type of
potential has many di�erent and important applications,
for example, the Manning�Rosen potential can be appli-
ed to various �elds such as atomic, condensed matter,
particle, and nuclear physics in both relativistic and non-
relativistic regimes [9�12]. Furthermore, it is used to
describe the vibrations of diatomic molecules such as N2,
I2, HCl, CH, LiH, and CO [13]. Many authors have studi-
ed Manning�Rosen potential in the nonrelativistic case,
in both the s and l-waves cases (see, for example, [14�
15]). On the other hand, this potential was also studied
in the relativistic regimes of the Klein�Gordon and Dirac
equations [16�19].
The Yukawa potentials are another type of exponential

potentials [20] (also known as static screened Coulomb
potentials) that have received a great deal of attenti-
on, in many �elds of physics such as nuclear phys-
ics, atomic physics, solid-state physics, and astrophys-
ics and they were studied in both relativistic and non-
relativistic quantum mechanics. They areused to descri-
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be the interactions of hydrogen-like atoms (such as He+

, Li+2, and Be+) and neutral atoms (such as 22Na , 12C,
and 158Au) [21�29].
Recently, there has been great interest in combin-

ing two or more potentials to have a large range of
applications, for example, the Manning�Rosen plus a
class of Yukawa potentials. In 2017, B. I. Ita et al.

[30] studied the Dirac equation for the Manning�Rosen
plus a class of Yukawa potentials and Coulomb-like
tensor interaction. In the next year, H. Louis et al. [31]
analyzed the Klein�Gordon equation (KGE) under the
same potential but with both Pekeris-like approximation
of the Coulomb term and parametric Nikiforov�Uvarov
method. Very recently, A. I. Ahmadov et al. [32] studied
the Klein�Gordon equation under the linear combination
of Manning�Rosen and a class of Yukawa potentials us-
ing both the Nikiforov�Uvarov, SUSYQM methods and
the approximation scheme proposed by Greene and Ald-
rich, and obtained the relativistic energy spectrum for
any l-state and the corresponding radial wave functions.
This new combination is useful in studying the nucleus
deformed-pair interactions and spin-orbit coupling.
As a result of several considerations and many

physical problems apparat at the level of the
non-renormalizable electroweak interaction, the non-
regularization of quantum �eld theories, quantum gravi-
ty, string theory, where the idea of non-commutativity
resulting from properties of the deformation of space-
space (W. Heisenberg in 1930 was the �rst to suggest the
idea and then it was developed by H. Snyder in 1947) was
one of the major solutions to these problems. Researchers
have received great praise for this approach through
some related work [33�44]. Naturally, the topographi-
cal properties of the noncommutativity space-space and
phase-phase have a clear e�ect on the various physical

properties of quantum systems and this has been a very
interesting subject in many �elds of physics as mentioned
previously.

In the last few years, we have investigated many
interesting studies concerned with the Yukawa potenti-
al in a nonrelativistic and relativistic state [45�49] due
to the importance of its applications in many �elds, as
previously indicated. From what we have seen so far,
most of the studies concerning Manning�Rosen and the
class of Yukawa potentials were within the framework of
ordinary quantum mechanics.

The above works motivated us to investigate
the approximate solutions of the 3-dimensional
deformed Klein�Gordon equation (DKGE) and
deformed Schr�odinger equation (DSE) for the modi�ed
equal vector scalar Manning�Rosen plus a class of
Yukawa potentials (DVSMCY-Ps) model o�ered by
A. I. Ahmadov and his coworkers [32] in relativistic
quantum mechanics (RQM). The potential under study
can be applied to some selected diatomic molecules
such as (HCl, CH, LiH, and CO) in relativistic
noncommutative quantume mechanics (RNCQM) and
nonrelativistic noncommutative quantume mechanics
(NRNCQM) symmetries. Upon concuction more studies
in the microscopic scales, we hope to gain more sci-
enti�c knowledge of elementary particles in the �eld
of nano-scales. The relativistic and nonrelativistic
energy levels under the DVSMCY-Ps have not been
obtained yet in the RNCQM and NRNCQM symmetri-
es. We hope to �nd new applications and profound
physical interpretations using a new version model of
the DVSMCY-Ps, this potential modeled in the new
symmetries of noncommutative quantume mechanics
(NCQM) as follows:

Vmcy (r) =
1

2Mb2

[
η (η − 1) e−2r/b(

1− e−r/b
)2 − Ae−r/b

1− e−r/b

]
− V0e

−δr

r
− V ′0e

−2δr

r2
7→ Vmcy (rnc)

= Vmcy (r)− ∂Vmsy (r)

∂r

LΘ

2r
+O

(
Θ2
)
, (1.1)

Smcy (r) =
1

2Mb2

[
λ (λ− 1) e−2r/b(

1− e−r/b
)2 − Be−r/b

1− e−r/b

]
− S0e

−δr

r
− S′0e

−2δr

r2
7→ Smcy (rnc)

= Smcy (r)− ∂Smsy (r)

∂r

LΘ

2r
+O

(
Θ2
)
. (1.2)

Here, Vmcy (r) and Smcy (r) are vector and scalar
Manning�Rosen plus a class of Yukawa potentials in the
symmetries of ordinary quantum mechanics are given by
[32],

−→
L
−→
Θ = LΘ, the parameter b relates to the potenti-

al range, while A (B) and η (λ) are four dimensionless
parameters, (V0, V

′
0) and (S0, S

′
0) are the strengths of the

class Yukawa potential, and its range is 1/δ; rnc and r
are the distances between the two particles in NCQM and
QM symmetries. The coupling LΘ equals Lx Θ12 + Ly
Θ23 + Lz Θ13 with Lx, Ly and Lz representing the
usual components of the angular momentum operator L
in RQM and NRQM, while the new noncommutativity
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parameter Θij equals θij/2. The new algebraic structure
of covariant noncommutative canonical commutations
relations (NCNCCRs) in the three representations of the
Schr�odinger, Heisenberg, and interactions pictures, in the
new symmetry of NCQM, is as follows [50�60]:[

x̂S
µ
∗,p̂S
ν

]
=
[
x̂H
µ
∗,p̂H
ν

]
=
[
x̂I
µ
∗,p̂I
ν

]
= i~effδµν , (1.3)[

x̂S
µ
∗,x̂S
ν

]
=
[
x̂H
µ
∗,x̂H
ν

]
=
[
x̂I
µ
∗,x̂I
ν

]
= iθµν . (1.4)

It is important to note that Eq. (1.4) is a covari-
ant equation (the same behavior of xµ) under the
Lorentz transformation, which includes boosts and/or
rotations of the observer's inertial frame. We generalize
the NCNCCRs to include the Heisenberg and interaction
pictures. It should be noted that, in our calculation, we

have used the natural units ~ = c = 1. Here, ~eff
∼= ~ is

the e�ective Planck constant, θµν = εµνθ (θ is the non-
commutative parameter with the dimension of [length]

2

which present the �uidity of the space, and εµν is just
an antisymmetric number, for example ε12 = −ε21 = 1,
ε13 = −ε31 = 1, ε23 = −ε32 = 1, ε11 = ε22 = ε33 = 0),
which is an in�nitesimal parameter if compared to the
energy values and elements of antisymmetric 3 × 3 real
matrices, and δµν is the Kronecker symbol. The symbol ∗
denotes the Weyl�Moyal star product, which is generali-
zed between two ordinary functions f(x)h(x) to the new
deformed form f̂(x̂)ĥ(x̂) being expressed with the Weyl�
Moyal star product f(x) ∗ h(x) in the symmetries of
NCQM as follows [57�69]:

(f ∗ h) (x) = exp
(
iεµνθ∂xµ∂

x
ν

)
(fh) (x) ≈ (fh) (x)− iεµνθ

2
∂xµf∂

x
µhcxµ=xν +O

(
θ2
)
. (1.5)

The indices µ, ν = 1, 2, 3 and O
(
θ2
)
stands for the

second and higher-order terms of the NC parameter. On
the other hand, the choice of these combinations of the
Manning�Rosen plus a class of Yukawa potentials stems
from the fact that it exhibits an almost exact behavi-
or similar to the Morse [70] and Deng�Fan�Eckart [71]
potentials and so we considered it to be an excellent choi-
ce for the study of the atomic interaction for diatomic
molecules such as HCl, CH, LiH, and CO. Our current
work is structured in six sections. The �rst one includes
the scope and purpose of our investigation while the
remaining parts of the paper are structured as follows. A
review of the KGE with the equal vector scalar Manning�
Rosen plus a class of Yukawa potentials is presented
in Section II. Section III is devoted to studying the
DRKGE by applying the ordinary Bopp's shift method
and improved approximation of the centrifugal term to
obtain the e�ective potential of DVSMCY-Ps. Besides,
via perturbation theory we �nd the expectation values of
some radial terms to calculate the energy shift produced
with the e�ect of the perturbed e�ective potential of
DVSMCY-Ps. Section IV is devoted to present the global
energy shift and the global energy spectra produced wi-
th DVSMCY-Ps in the RNCQM symmetries. In Secti-
on V, we determine the energy spectra of some selected
diatomic molecules such as (HCl, CH, LiH, and CO)
under DVSMCY-Ps in the RNCQM. In Section VI, the
summary and conclusion are presented.

II. REVISED RKGE UNDER THE EQUAL
VECTOR SCALAR MANNING�ROSEN PLUS A
CLASS OF YUKAWA POTENTIALS MODEL IN

RQM

The 3-dimensional relativistic Klein�Gordon equation
(RKGE) with a scalar potential Smcy (r) and a vector
potential Vmcy (r) for the diatomic molecule with reduced
mass M and wave function is given as

(
−∆ + (M + Smcy (r))

2

− (Enl − Vmcy (r))
2

)
Ψ (r, θ, ϕ) = 0. (2.1)

The vector potential Vmcy (r) is due to the four-vector li-
near momentum operator Aµ (Vmcy (r) ,A = 0) and the
space-time scalar potential Smcy (r) is due to the e�ect
of the mass M ; Enl represents the relativistic energy
eigenvalues in 3-dimensions and l represents the pri-
ncipal and orbital quantum numbers, respectively. The
Manning�Rosen plus a class of Yukawa potentials model
has spherical symmetry, allowing the solutions of the
time-independent RKGE of the known form Ψ (r, θ, ϕ) =
Unl(r)
r Y ml (θ, ϕ) to separate the radial Unl (r) and angular

parts Y ml (θ, ϕ) of the wave function Ψ (r, θ, ϕ) and ∆
is the ordinary 3-dimensional Laplacian operator. Thus,
Eq. (2.1) becomes:

 d2

dr2 −
(
M2 − E2

nl

)
− 2

(
EnlVmcy (r)

+MSmcy (r)

)

+V 2
mcy (r)− S2

mcy (r)− l(l+1)
r2

Unl (r) = 0. (2.2)
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The shorthand notation Emcy
eff = M2−E2

nl and V
mcy
eff (r) = 2 (EnlVmcy (r) +MSmcy (r))−V 2

mcy (r)+S2
mcy (r)+ l(l+1)

r2 ,
we obtain the following second-order Schr�odinger-like equation:(

d2

dr2
−
(
Emcy

eff + V mcy
eff (r)

))
Unl (r) = 0. (2.3)

When the vector potential is equal to the scalar potential Vmp (r) = Smp (r), the e�ective potential of the Manning�
Rosen plus a class of Yukawa potentials reduces to the form:

V mcy
eff (r) = 2 (Enl +M)

(
1

2Mb2

[
η (η − 1) e−2r/b(

1− e−r/b
)2 − Ae−r/b

1− e−r/b

]
− V0e

−δr

r
− V ′0e

−2δr

r2

)
+
l(l + 1)

r2
. (2.4)

A. I. Ahmadov et al. [32] derived analytical expressions for the wave function and the corresponding energy values
for the vector and scalar Manning�Rosen plus a class of Yukawa potentials using the linear combination of Manning�
Rosen and a class of Yukawa potentials using both the Nikiforov�Uvarov, SUSYQM methods and the approximation
scheme proposed by Greene and Aldrich as follows:

Ψ (r, θ, ϕ) =
Cnl
r
sεnl (1− s)knl Γ (n+ 2εnl + 1)

n!Γ (2εnl + 1)
2F1 (−n, 2εnl + 2knl + n; 1 + 2εnl; s)Y

m
l (θ, ϕ) , (2.5)

M2 − E2
nl = δ2

[
β2
nl − l (l + 1)− 1/2− n (n+ 1)

n+ 1/2 +
√

1/4 + α2
nl + l (l + 1)

−
(2n+ 1)

√
1/4 + α2

nl + l (l + 1)

n+ 1/2 +
√

1/4 + α2
nl + l (l + 1)

]2

, (2.6)

where s = e−2δr, εnl =

√
M2−E2

nl

2δ , knl = 1/2 +
√

1/4 + α2
nl + l (l + 1), α2

nl = Enl+M
2δ V014, V014 = 2δ2η(η−1)

M , β2
nl =

Enl+M
2δ V023, V023 = 2δ2A

M + 2δV0, while 2F1 (−n, 2εnl + 2knl + n; 1 + 2εnl; s) are the hypergeometric polynomials and
the normalization constant is given by [32]:

Cnl =

√
2δn! (εnl + knl + n) Γ (2εnl + 2knl + n) Γ (2εnl + 1)

(knl + n) Γ (2εnl + n+ 1) Γ (2knl + n)
. (2.7)

III. THE SOLUTION OF DRKGE UNDER THE
DVSMCY-Ps MODEL IN RNCQM SYMMETRIES

A. Review of Bopp's shift method

At the beginning of this section, we shall give and
de�ne a formula of the deformed equal vector scalar
Manning�Rosen plus a class of Yukawa potentials in
the symmetries of relativistic noncommutative three-
dimensional real space RNCQM symmetries. To achieve
this goal, it is useful to write the DKGE by applying the
notion of the Weyl�Moyal star product, which was seen
previously in Eqs. (1.3), (1.4) and (1.5), to the di�erenti-
al equation that is satis�ed by the radial wave function
Unl (r) in Eq. (2.3). Thus, the radial wave function in
RNCQM symmetries becomes as follows [72�79]:

(
d2

dr2
−
(
Emcy

eff + V mcy
eff (r)

))
∗ Unl (r) = 0. (3.1)

It is established extensively in the literature and in a
basic text [64, 75�80] that the star products can be si-
mpli�ed from Bopp's shift method. Physicist Fritz Bopp
was the �rst to consider pseudo-di�erential operators

obtained from a symbol by the quantization rules x →
x − i

2
∂
∂p and p → p + i

2
∂
∂x instead of the ordinary

correspondence x→ x and p→ i
2
∂
∂x [80, 81]. In physics

literature, this is known as Bopp's shifts. This quantizati-
on procedure is called the Bopp quantization. It is known
to the specialists that Bopp's shift method [64, 79, 80]
has been applied e�ectively and has succeeded in si-
mplifying the three basic equations: DSE, DKGE, and
the deformed Dirac equation (DDE) with the notion of
star product, to the Schr�odinger equation (SE), KGE,
and Dirac equation (DE) with the notion of ordinary
product, respectively. Thus, Bopp's shift method is based
on reducing second-order linear di�erential equations of
DSE, DKGE, and DDE with star product to second-
order linear di�erential equations of SE, KGE, and DE
without star product with simultaneous translation in
the space-space. The CNCCRs with star product in Eqs.
(1.3) and (1.4) become new CNCCRs without the notion
of star product as follows (see, e.g., [41�51]):

[
x̂S
µ, p̂

S
ν

]
=
[
x̂H
µ , p̂

H
ν

]
=
[
x̂I
µ, p̂

I
ν

]
= i~effδµν , (3.2)[

x̂S
µ, x̂

S
ν

]
=
[
x̂H
µ , x̂

H
ν

]
=
[
x̂I
µ, x̂

I
ν

]
= iθµν . (3.3)
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The generalized positions and momentum coordi-
nates

(
x̂S
µ, x̂

H
µ , x̂

I
µ

)
and

(
p̂S
µ, p̂

H
µ , p̂

I
µ

)
in the symmetries

of RNCQM are de�ned in terms of the corresponding
coordinates in the symmetries of RQM

(
xS
µ, x

H
µ , x

I
µ

)
and(

pS
µ, p

H
µ , p

I
µ

)
via, respectively [40�50]:

x̂(S,H,I)
µ = x(S,H,I)

µ −
3∑

ν=1

θµν
2
p(S,H,I)
ν , (3.4)

p̂(S,H,I)
µ = p(S,H,I)

µ . (3.5)

This allows us to �nd the operator r2
nc equal r

2 − LΘ
(see the Introduction) in NCQM symmetries [68, 69].

B. New e�ective potential in RNCQM symmetries

According to the Bopp shift method, Eq. (3.1) becomes
similar to the following like the Schr�odinger equation (wi-
thout the notions of star product):

(
d2

dr2
−
−
(
M2 − E2

nl

)
− l(l+1)

r2nc

−2Vmcy (rnc) (Enl +M)

)
Unl (r) = 0. (3.6)

The new operators Vmcy (rnc) and l(l+1)
r2nc

are expressed
as in RNCQM symmetries as follows:


Vmcy (rnc) = 1

2Mb2

[
η(η−1)e−2r/b

(1−e−r/b)
2 − Ae−r/b

1−e−r/b

]
− V0e

−δr

r − V ′0e
−2δr

r2 − ∂Vmsy(r)
∂r

LΘ
2r +O

(
Θ2
)

l(l+1)
r2nc

= l(l+1)
r2 + l(l+1)

r4 LΘ +O
(
Θ2
) . (3.7)

So we can rewrite:

Vmcy (rnc) (Enl +M) = Vmcy (r) (Enl +M)− Enl +M

2r

∂Vmsy (r)

∂r
LΘ +O

(
Θ2
)
. (3.8)

Moreover, to illustrate the above equation in a simple
mathematical way and attractive form, it is useful to
introduce the following symbol, V mcy

nc-e� (r), thus the radial
Eq. (3.6) becomes:

(
d2

dr2
− (Emcy

eff + V mcy
nc-e� (r))

)
Unl (r) = 0 (3.9)

with:

V mcy
nc-e� (r) = V mcy

eff (r) + V mcy
pert (r) . (3.10)

Moreover, V mcy
pert (r) is given by the following relation:

V mcy
pert (r) =

l (l + 1)

r4
LΘ− Enl +M

r

∂Vmsy (r)

∂r
LΘ

+ O
(
Θ2 (3.11)

It should be noted that Eq. (2.3) with the Manning�
Rosen plus a class of Yukawa potentials can be exactly
solved for l = 0, but for the case l 6= 0, A. I. Ahmadov
et al. had approximatively solved the equation using
Eq. (2.5) within the Greene�Aldrich approximation
scheme in RQM symmetries. In the new form of radi-
al Schr�odinger-like equation written in Eq. (3.9), we
have terms including 1

r , 1
r4 and other Coulombic-like

terms, which make this equation impossible to solve
analytically for l = 0 and l 6= 0; it can only be solved

approximately. From this point of view, we can consi-
der the improved approximation of the centrifugal term
proposed by M. Badawi et al. [82]. This method proved
its power and e�ciency when compared with the Greene
and Aldrich approximation [6]. The approximations type
suggested by (Greene and Aldrich) and Dong et al. for
a short-range potential is an excellent approximation to
the centrifugal term and allows us to get a second order
solvable di�erential equation. Unlike the approximation
used in the previous works [19, 30�32, 45, 49, 50, 79],
here we use:

1

r2
≈ 4δ2e−2δr

(1− e−2δr)
2 =

4δ2s

(1− s)2 . (3.12)

It is important to mention here that the above approxi-
mations are valid when δr � 1. This allows us to obtain:

1

r
≈ 2δe−δr

1− e−2δr
=

2δs1/2

1− s
. (3.13)

Now we rewrite the Manning�Rosen potential plus a
class of Yukawa potentials under the assumption of 1

b =
2δ as follows:

Vmcy (r) =
1

2Mb2

[
η (η − 1) e−4δr

(1− e−2δr)
2 −

Ae−δr

1− e−δr

]

− V0e
−δr

r
− V ′0e

−2δr

r2
. (3.14)
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After straightforward calculations, we obtain ∂Vmsy(r)
∂r

as follows:

∂Vmsy (r)

∂r

= −8δ3

M
η (η − 1)

(
e−4δr

(1− e−2δr)
2 +

e−6δr

(1− e−2δr)
2

)

+
4δ3A

M

e−2δr

1− e−2δr
+

4δ3A

M

e−4δr

(1− e−2δr)
2 (3.15)

+
V0e
−δr

r
+
V0e
−δr

r2
+ 2δ

V ′0e
−2δr

r2
+ 2δ

V ′0e
−2δr

r3
.

We apply the approximations of Greene and Aldrich
to the expression ∂Vmsy(r)

∂r and get the following formula
:

∂Vmsy (r)

∂r
= λ1

s2

(1− s)2 + λ2
s3

(1− s)3 + λ3
s

1− s

+ λ4
s3/2

(1− s)2 + λ5
s5/2

(1− s)3 (3.16)

with λ1 = 8δ3V0 + λ2, λ2 = − 8δ3

M η (η − 1), λ3 = 8δ3A
M +

2V0δ
2, λ4 = 4V0δ

2 and λ5 = 16V ′0 δ3. This allows us to
write the second part of Eq. (3.11) as follows:

Enl +M

r

∂Vmsy (r)

∂r
= 2δ (Enl +M) (3.17)

×

 λ1
s5/2

(1−s)3 + λ2
s7/2

(1−s)4

+λ3
s3/2

(1−s)2 + λ4
s2

(1−s)3 + λ5
s3

(1−s)4

 .

By substituting Eq. (3.17) into Eq. (3.11), we �-
nd the perturbed e�ective potential V mcy

pert (r) generated
from noncommutativity properties of space-space in the
symmetries of RNCQM as follows:

V mcy
pert (r) =

16δ4l (l + 1) s2

(1− s)4 LΘ− 2δ (Enl +M) (3.18)

×

 λ1
s5/2

(1−s)3 + λ2
s7/2

(1−s)4

+λ3
s3/2

(1−s)2 + λ4
s2

(1−s)3 + λ5
s3

(1−s)4

LΘ +O
(
Θ2
)
.

We have applied the approximations of Greene and
Aldrich to the term l(l+1)

r4 . The Manning�Rosen potenti-
al plus a class of Yukawa potentials is extended
by including new terms proportional to the radial
terms s2

(1−s)4 ,
s5/2

(1−s)3 ,
s7/2

(1−s)4 ,
s3/2

(1−s)2 ,
s2

(1−s)3 , and
s3

(1−s)4

to become the deformed Manning�Rosen potential plus
a class of Yukawa potentials in RNCQM symmetries.
The generated new e�ective potential V mcy

nc-e� (r) is also

proportional to the in�nitesimal vector
−→
Θ . This allows

us to consider V mcy
pert (r) to be a perturbation potenti-

al compared with the main potential V mcy
eff (r) (parent

potential operator in the symmetries of RNCQM, that
is, the inequality V mcy

pert (r) � V mcy
eff (r) has been achi-

eved. That is, all the physical justi�cations for applying
the time-independent perturbation theory become sati-
s�ed. This allows us to give a complete prescription for
determining the energy level of the generalized excited
states.

C. The expectation values in RNCQM symmetries

In this sub-section, we want to apply the perturbative
theory. In the case of RNCQM, we �nd the expectation
values of the radial terms s2

(1−s)4 ,
s5/2

(1−s)3 ,
s7/2

(1−s)4 ,
s3/2

(1−s)2 ,
s2

(1−s)3 , and
s3

(1−s)4 and take into account the wave functi-

on which we have seen previously in Eq. (2.5). Thus,
after straightforward calculations, we obtain the follow-
ing results:

〈
s2

(1− s)4

〉
(nlm)

= Cnnl

+∞∫
0

s2εnl (1− s)2knl [2F1 (−n, 2εnl + 2knl + n; 1 + 2εnl; s)]
2 s2 dr

(1− s)4 , (3.19)

〈
s5/2

(1− s)3

〉
(nlm)

= Cnnl

+∞∫
0

s2εnl (1− s)2knl [2F1 (−n, 2εnl + 2knl + n; 1 + 2εnl; s)]
2 s5/2 dr

(1− s)3 , (3.20)

〈
s7/2

(1− s)4

〉
(nlm)

= Cnnl

+∞∫
0

s2εnl (1− s)2knl [2F1 (−n, 2εnl + 2knl + n; 1 + 2εnl; s)]
2 s7/2 dr

(1− s)4 , (3.21)

〈
s3/2

(1− s)2

〉
(nlm)

= Cnnl

+∞∫
0

s2εnl (1− s)2knl [2F1 (−n, 2εnl + 2knl + n; 1 + 2εnl; s)]
2 s3/2 dr

(1− s)2 , (3.22)
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〈
s2

(1− s)3

〉
(nlm)

= Cnnl

+∞∫
0

s2εnl (1− s)2knl [2F1 (−n, 2εnl + 2knl + n; 1 + 2εnl; s)]
2 s2 dr

(1− s)3 , (3.23)

〈
s3

(1− s)4

〉
(nlm)

= Cnnl

+∞∫
0

s2εnl (1− s)2knl [2F1 (−n, 2εnl + 2knl + n; 1 + 2εnl; s)]
2 s3 dr

(1− s)4 , (3.24)

with Cnnl =
[
Cnl

Γ(n+2εnl+1)
n!Γ(2εnl+1)

]2
. We have used useful abbreviations 〈D〉(nlm) = 〈n, l,m D n, l,m〉 to avoid the extra

burden of writing equations. It should be noted that the above equations are a physical translation of the �rst-order
energy corrections that can generally be obtained by applying the following relationship known in the literature [83]:

〈
V mcy

pert (r)
〉

(nlm)
=

+∞∫
0

Ψ∗ (r, θ, ϕ)V mcy
pert (r) Ψ (r, θ, ϕ) d3r.

Here, d3r = r2 sin (θ) dθdϕdr. Furthermore, we have applied the property of the spherical harmonics, which has
the form

∫
Y ml (θ, ϕ)Y m

′

l′ (θ, ϕ) sin θ dθ dϕ = δll′δmm′ . We have s = e−2δr , this allows us to obtain dr = − 1
2δ
ds
s .

From the asymptotic behavior of s = e−2δr when r → 0 (s → +1) and when r → +∞ (s → 0), this allows us to
reformulate Eqs. (3.19)�(3.24) as follows:〈

s2

(1− s)4

〉
(nlm)

= Nmcp
new

+1∫
0

s2εnl+1 (1− s)2knl−4
[2F1 (−n, 2εnl + 2knl + n; 1 + 2εnl; s)]

2
ds, (3.25)

〈
s5/2

(1− s)3

〉
(nlm)

= Nmcp
new

+1∫
0

s2εnl+3/2 (1− s)2knl−3
[2F1 (−n, 2εnl + 2knl + n; 1 + 2εnl; s)]

2
ds, (3.26)

〈
s7/2

(1− s)4

〉
(nlm)

= Nmcp
new

+1∫
0

s2εnl+5/2 (1− s)2knl−4
[2F1 (−n, 2εnl + 2knl + n; 1 + 2εnl; s)]

2
ds, (3.27)

〈
s3/2

(1− s)2

〉
(nlm)

= Nmcp
new

+1∫
0

s2εnl+1/2 (1− s)2knl−2
[2F1 (−n, 2εnl + 2knl + n; 1 + 2εnl; s)]

2
ds, (3.28)

〈
s2

(1− s)3

〉
(nlm)

= Nmcp
new

+1∫
0

s2εnl+1 (1− s)2knl−3
[2F1 (−n, 2εnl + 2knl + n; 1 + 2εnl; s)]

2
ds, (3.29)

〈
s3

(1− s)4

〉
(nlm)

= Nmcp
new

+1∫
0

s2εnl+2 (1− s)2knl−4
[2F1 (−n, 2εnl + 2knl + n; 1 + 2εnl; s)]

2
ds. (3.30)

Here, Nmcp
new =

Cnnl
2δ . By using the same method as that proposed by Dong et al. [84] and applied by Zhang [85], we

calculate the integrals in Eqs. (3.25)�(3.30). With the help of the special integral formula,

+1∫
0

sξ−1 (1− s)σ−1
[2F1 (c1, c2; c3; s)]

2
ds =

Γ (ξ) Γ (σ)

Γ (ξ + σ)
3F2 (c1, c2, σ; c3, σ + ξ; 1) , (3.31)
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where 3F2 (c1, c2, σ; c3, σ + ξ; 1) is obtained from the generalized hypergeometric function
pFq (α1, α2, . . . , αp;β1, β2, . . . , βq; 1) for p = 3 and q = 2 while Γ (σ) denotes the usual Gamma function.

We obtain from Eqs. (3.25)�(3.30) the results:

〈
s2

(1− s)4

〉
(nlm)

= Nmcp
new

Γ (2εnl + 2) Γ (2knl − 3)

Γ (Ω− 1)
3F2 (−n,Ω + n, 2knl − 3; 1 + 2εnl,Ω− 1; 1) , (3.32)

〈
s5/2

(1− s)3

〉
(nlm)

= Nmcp
new

Γ (2εnl + 5/2) Γ (2knl − 2)

Γ (Ω + 1/2)
3F2 (−n,Ω + n, 2knl − 2; 1 + 2εnl,Ω + 1/2; 1) , (3.33)

〈
s7/2

(1− s)4

〉
(nlm)

= Nmcp
new

Γ (2εnl + 7/2) Γ (2knl − 3)

Γ (Ω + 1/2)
3F2 (−n,Ω + n, 2knl − 3; 1 + 2εnl,Ω + 1/2; 1) , (3.34)

〈
s3/2

(1− s)2

〉
(nlm)

= Nmcp
new

Γ (2εnl + 3/2) Γ (2knl − 1)

Γ (Ω + 1/2)
3F2 (−n,Ω + n, 2knl − 1; 1 + 2εnl,Ω + 1/2; 1) , (3.35)

〈
s2

(1− s)3

〉
(nlm)

= Nmcp
new

Γ (2εnl + 2) Γ (2knl − 2)

Γ (Ω)
3F2 (−n,Ω + n, 2knl − 2; 1 + 2εnl,Ω; 1) , (3.36)

〈
s3

(1− s)4

〉
(nlm)

Nmcp
new

Γ (2εnl + 3) Γ (2knl − 3)

Γ (Ω)
3F2 (−n,Ω + n, 2knl − 3; 1 + 2εnl,Ω; 1) , (3.37)

where Ω (δ, η, b, A, V0, V
′
0) = 2εnl (δ, η, b, A, V0, V

′
0) + 2knl (δ, η, b, A, V0, V

′
0).

D. The energy shift for the deformed equal vector
scalar Manning�Rosen plus a class of Yukawa

potentials in RNCQM symmetries

The global relativistic energy shift GRES for the
deformed equal vector scalar Manning�Rosen plus a
class of Yukawa potentials in RNCQM symmetries is
composed of three principal parts. The �rst one is
produced from the e�ect of the generated spin-orbit
e�ective potential. This e�ective potential is obtained
by replacing the coupling of the angular momentum
operator and the noncommutative vector LΘ with the
new equivalent coupling ΘLS (with Θ2 = Θ2

12 + Θ2
23 +

Θ2
13). This degree of freedom came considering that

the in�nitesimal noncommutative vector Θ is arbi-
trary. We have chosen it to a parallel of the spin S
of the diatomic molecules under the deformed equal
vector scalar Manning�Rosen plus a class of Yukawa
potentials. Furthermore, we replace the new spin-orbit
coupling ΘLS with the corresponding physical form

(Θ/2) G2, with G2 = J2−L2−S2. Moreover, in quantum
mechanics, the operators Ĥmcy

rnc ,J
2, L2,S2, and Jz form

a complete set of conserved physics quantities, the ei-
genvalues of the operator G2 equal the values k (j, l, s) =
[j(j + 1)− l(l + 1)− s(s+ 1)] /2, with |l − s| ≤ j ≤
|l + s|. As a direct consequence, the partial energy shift
∆Eso

mcy (n, δ, η, b, A, V0, V
′
0 ,Θ, j, l, s) due to the perturbed

e�ective potential V mcy
pert (r) produced for the n

th excited
state, in RNCQM symmetries is as follows:

∆Eso
mcy (n, δ, η, b, A, V0, V

′
0 ,Θ, j, l, s)

= Θ (j(j + 1)− l(l + 1)− s(s+ 1)) (3.38)

×〈Ξ〉RMCY
(nlm) (n, δ, η, b, A, V0, V

′
0) .

The global expectation value 〈Ξ〉RMCY
(nlm) (n, δ, η, b, A,

V0, V
′
0) is determined from the following expression:
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〈Ξ〉RMCY
(nlm) (n, δ, η, b, A, V0, V

′
0) = 16δ4l (l + 1)

〈
s2

(1− s)4

〉
(nlm)

− 2δ (Enl +M)λ1

〈
s5/2

(1− s)3

〉
(nlm)

(3.39)

−2δ (Enl +M)

+λ2

〈
s7/2

(1− s)4

〉
(nlm)

λ3

〈
s3/2

(1− s)2

〉
(nlm)

+ λ4

〈
s2

(1− s)3

〉
(nlm)

+ λ5

〈
s3

(1− s)4

〉
(nlm)

 .

The second part of the new e�ective potential
V mcy
nc-e� (r) is obtained from the magnetic e�ect of

perturbative e�ective potential V mcy
pert (r) under the

deformed equal vector scalar Manning�Rosen plus a class
of Yukawa potentials. This e�ective potential is achi-
eved when we replace both LΘ and Θ12 with (σBLz
and σB), respectively; here, B and σ symbolize the
intensity of the magnetic �eld induced by the e�ect of
deformation of space-space geometry and a new in�ni-
tesimal noncommutativity parameter, so that the physi-
cal unit of the original noncommutativity parameter Θ12

is [length]2 is the same unit of σB. We also need to apply
〈n′, l′,m′ Lz n, l,m〉 = mδm′mδl′lδn′n ( −l′ ≤ m′ ≤ l
and−l ≤ m ≤ l). All of this data allows for the discovery
of the new energy shift ∆Emag

mcy (n, δ, η, b, A, V0, V
′
0 , σ,m)

due to the perturbed Zeeman e�ect, which is created
by the in�uence of the deformed equal vector scalar
Manning�Rosen plus a class of Yukawa potentials for the
n

th excited-state in RNCQM symmetries, as follows:

∆Emag
mcy (n, δ, η, b, A, V0, V

′
0 , σ, j, l, s) (3.40)

= σB 〈Ξ〉RMCY
(nlm) (n, δ, η, b, A, V0, V

′
0)m.

Now, for our purposes, we are interested in �ndi-
ng a new third automatically important symmetry
for the deformed equal vector scalar Manning�Rosen
plus a class of Yukawa potentials at zero temperature
in RNCQM symmetries. This physical phenomenon
is induced automatically from the in�uence of the
perturbed e�ective potential V mcy

pert (r), which we have
seen in Eq. (3.18). We discover these important physi-
cal phenomena when our studied system consists of
non-interacting particles and is considered as the Fermi
gas. It is formed from all the particles in their gaseous
state (HCl, CH, LiH, and CO) undergoing rotation
with angular velocity Ω, if we make the following two
simultaneous transformations to ensure that previous
calculations are not repeated:

Θ→ χΩ and LΘ→ χLΩ. (3.41)

Here, χ is just in�nitesimal real proportional
constants. We can express the e�ective potential
V mcy-rot

pert (r) which induced the rotational movements of
the diatomic molecules as follows:

V mcy-rot
pert (r) =

16δ4l (l + 1)χs2

(1− s)4 LΩ− 2δ (Enl +M) (3.42)

×

(
λ1

s5/2

(1− s)3 + λ2
s7/2

(1− s)4 + λ3
s3/2

(1− s)2 + λ4
s2

(1− s)3 + λ5
s3

(1− s)4

)
χLΩ.

To simplify the calculations without compromising physical content, we choose the rotational velocity Ω parallel
to the Oz axis. Then we transform the spin-orbit coupling to the new physical phenomena as follows:

χf(s)LΩ =χf(s)ΩLz (3.43)

with

f(s) =
16δ4l (l + 1) s2

(1− s)4 − 2δ (Enl +M)

(
λ1

s5/2

(1− s)3 + λ2
s7/2

(1− s)4 + λ3
s3/2

(1− s)2 + λ4
s2

(1− s)3 + λ5
s3

(1− s)4

)
.(3.44)
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All of this data allows for the discovery of the
new energy shift ∆Ef-rot

mcy (n, δ, η, b, A, V0, V
′
0 , χ,m) due

to the perturbed Fermi gas e�ect V mcy-rot
pert (r), which is

generated automatically by the in�uence of the deformed
equal vector scalar Manning�Rosen plus a class of
Yukawa potentials for the ground state and the �rst exci-
ted state in RNCQM symmetries as follows:

∆Ef-rot
mcy (n, δ, η, b, A, V0, V

′
0 , χ,m) (3.45)

= χ 〈Ξ〉RMCY
(nlm) (n, δ, η, b, A, V0, V

′
0) Ωm.

It is worth mentioning that K. Bencheikh et al. [86,
87] studied rotating isotropic and anisotropic harmoni-
cally con�ned ultra-cold Fermi gas in a two and three-
dimensional space at zero temperature, but in that
study, the rotational term was added to the Hamiltonian
operator, in contrast to our case, where this rotational
term χf(s)LΩ automatically appears due to the large
symmetries resulting from the deformation of space-
phase.

IV. RESULTS AND DISCUSSION

In this section, we summarize our obtained results
∆Eso

mcy (n, δ, η, b, A, V0, V
′
0 , j, l, s), ∆Emag

mcy (n, δ, η, b, A, V0,

V ′0 ,m), and ∆E f-rot
mcy (n, δ, η, b, A, V0, V

′
0 ,m) for the n

th

excited state due to the spin-orbit coupling, the modi-
�ed Zeeman e�ect, and modi�ed Fermi phenomena
induced by V mcy

pert (r) due to the superposition princi-

ple. This allows us to deduce the additive energy shift
∆Etot

mcy (n, δ, η, b, A, V0, V
′
0 , j, l, s,m) under the in�uence

of DVSMCY-Ps in RNCQM symmetries as follows:

∆Etot
mcy (n, δ, η, b, A, V0, V

′
0 ,Θ, σ, χ, j, l, s,m)

= 〈Ξ〉RMCY
(nlm) (n, δ, η, b, A, V0, V

′
0) (4.1)

× (Θk (j, l, s) + σB +mχΩm) .

The above results present the global energy shift,
which is generated with the e�ect of noncommutati-
vity properties of space-space; it depended explicitly
on the noncommutativity parameters (Θ, σ, χ), the
parameters of the equal vector scalar Manning�Rosen
plus a class of Yukawa potentials (η, b, A, V0, V

′
0) in

addition to the atomic quantum numbers (j, l, s,m).
We observed that the obtained global e�ective energy
under DVSMCY-Ps has a carry unit of energy because
it consists of the carrier of energy (M2 − E2

nl ). In the
symmetries of RNCQM, as a direct consequence, the
new generalized excited relativistic energy states
E

mcy
r-nc (n, δ, η, b, A, V0, V

′
0 , j, l, s,m) produced with

DVSMCY-Ps, are the sum of the square roots of the shift

energy
[
∆Etot

mcy (n, δ, η, b, A, V0, V
′
0 ,Θ, σ, χ, j, l, s,m)

]1/2
and the usual relativistic energy Enl due to the e�ect of
the equal vector scalar Manning�Rosen plus a class of
Yukawa potentials in RQM symmetries in Eq. (2.8), as
follows:

Emcy
r-nc (n, δ, η, b, A, V0, V

′
0 ,Θ, σ, χ, j, l, s,m) (4.2)

= Enl +
[
〈Ξ〉RMCY

(nlm) (n, δ, η, b, A, V0, V
′
0) (Θk (j, l, s) + σBm+mχΩm)

]1/2
.

For the ground state and �rst excited state, the above equation can be reduced to the following form:

Emcy
r-nc (n = 0, δ, η, b, A, V0, V

′
0 ,Θ, σ, χ, j, l, s,m) (4.3)

= E0l +
[
〈Ξ〉RMCY

(nlm) (n = 0, δ, η, b, A, V0, V
′
0) (Θk (j, l, s) + σBm+mχΩm)

]1/2
and

Emcy
r-nc (n = 1, δ, η, b, A, V0, V

′
0 ,Θ, σ, χ, j, l, s,m) (4.4)

= E1l +
[
〈Ξ〉RMCY

(nlm) (n = 1, δ, η, b, A, V0, V
′
0) (Θk (j, l, s) + σBm+mχΩm)

]1/2
.

Equation (4.4) describe the relativistic energy of some diatomic molecules such as HCl, CH, LiH, and CO under
the deformed equal vector scalar Manning�Rosen plus a class of Yukawa potentials in RNCQM symmetries.
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A. Relativistic particular cases under
MESVEMHPs

After examining the bound state solutions of any
l -state deformed Klein�Gordon equation with the
deformed equal vector scalar Manning�Rosen plus a class
of Yukawa potentials in RNCQM symmetries, our task is
now to discuss some particular cases below. By adjusting
potential parameters for each case, some familiar potenti-
als, which are useful for other physical systems, can be
obtained.
(1) Upon setting V0 and V ′0 to zero, the potential in

Eq. (2.1) turns into the deformed equal vector scalar
Manning�Rosen [16] in RQM symmetries, as follows :

Vmp (r) =
1

2Mb2

[
η (η − 1) e−2r/b(

1− e−r/b
)2 − Ae−r/b

1− e−r/b

]
. (4.5)

The perturbed e�ective potential V mcy
pert (r) in Eq.

(3.18) turns to the perturbed e�ective potential V mp
pert (r)

in the symmetries of RNCQM as follows:

V mp
pert (r) =

16δ4l (l + 1) s2

(1− s)4 LΘ− 2δ (Emp
nl +M) (4.6)

×

(
−8δ3

M
η (η − 1)

s5/2

(1− s)3 −
8δ3

M
η (η − 1)

s7/2

(1− s)4 +
8δ3A

M

s3/2

(1− s)2

)
LΘ +O

(
Θ2
)
.

In this case, the additive energy shift ∆Etot
mp (n, δ, η, b, A, j, l, s,m) under the modi�ed in�uence of the equally mixed

Manning�Rosen potentials in RNCQM symmetries is determined from the following formula:

∆Etot
mp (n, δ, η, b, A,Θ, σ, χ, j, l, s,m) = 〈Ξ〉RMP

(nlm) (n, δ, η, b, A) (Θk (j, l, s) + σB +mχΩm) .

Thus, the corresponding global expectation value 〈Ξ〉RMP
(nlm) (n, δ, η, b, A) is determined from the following expression:

〈Ξ〉RMP
(nlm) (n, δ, η, b, A) = 16δ4l (l + 1)

〈
s2

(1− s)4

〉
(nlm)

− 2δ (Emp
nl +M) (4.7)

×

−8δ3

M
η (η − 1)

〈 s5/2

(1− s)3

〉
(nlm)

+

〈
s7/2

(1− s)4

〉
(nlm)

+
8δ3A

M

〈
s3/2

(1− s)2

〉
(nlm)

 .

The new relativistic energy in Eq. (4.2) reduces to the new energy Emp
r-nc (n, δ, η, b, A, V0, V

′
0 ,Θ, σ, χ, j, l, s,m) under

the modi�ed equal scalar and vector new Manning�Rosen potential in RNCQM, as follows:

Emp
r-nc (n, δ, η, b, A, V0, V

′
0 ,Θ, σ, χ, j, l, s,m) = Emp

nl +

[
〈Ξ〉RMP

(nlm) (n, δ, η, b, A)

(Θk (j, l, s) + σBm+mχΩm)

]1/2

.

Making the corresponding parameter replacements in Eq. (2.8), we obtain the energy equation for the Manning�
Rosen potentials in the Klein�Gordon theory with equally mixed potentials, in RQM symmetries as :

M2 − Emp2
nl = δ2

βmp2
nl − l (l + 1)− 1/2− n (n+ 1)

n+ 1/2 +
√

1/4 + α2
nl + l (l + 1)

−
(2n+ 1)

√
1/4 + αmp2

nl + l (l + 1)

n+ 1/2 +
√

1/4 + α2
nl + l (l + 1)

2

, (4.8)

where αmp2
nl = (Emp

nl +M) δη(η−1)
M and βmp2

nl =

(Emp
nl +M) δAM . It should be noted that the result

recorded in Eq. (4.9) is consistent with the results of
our research in Ref. [88].

(2) Upon setting η and A to zero, the potential in
Eq. (2.1) turns into the deformed equal vector scalar class

of Yukawa potentials in RQM symmetries, as follows:

Vcyp (r) = −V0e
−δr

r
− V ′0e

−2δr

r2
. (4.9)

The perturbed e�ective potential V mcy
pert (r) in

Eq. (3.18) turns into the perturbed e�ective potential
V cyp

pert (r) in the symmetries of RNCQM as follows:
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V mcy
pert (r) =

16δ4l (l + 1) s2

(1− s)4 LΘ− 2δ (Ecyp
nl +M)

(
8δ3V0s

5/2

(1− s)3 +
2V0δ

2s3/2

(1− s)2 +
4V0δ

2s2

(1− s)3 +
16V ′0δ

3s3

(1− s)4

)
LΘ. (4.10)

In this case, the additive energy shift ∆Etot
cyp (n, δ, V0, V

′
0 , j, l, s,m) under the in�uence of the modi�ed equally mixed

class of Yukawa potentials in RNCQM symmetries is determined from the following formula:

∆Etot
mcy (n, δ, V0, V

′
0 ,Θ, σ, χ, j, l, s,m) = 〈Ξ〉RCYP

(nlm) (n, δ, η, b, A) (Θk (j, l, s) + σB +mχΩm) .

Thus, the corresponding global expectation value 〈Ξ〉RMP
(nlm) (n, δ, η, b, A) is determined from the following expression:

〈Ξ〉RCYP
(nlm) (n, δ, V0, V

′
0) = 16δ4l (l + 1)

〈
s2

(1− s)4

〉
(nlm)

− 4δ3 (Ecyp
nl +M) (4.11)

×

4δV0

〈
s5/2

(1− s)3

〉
(nlm)

+ V0

〈
s3/2

(1− s)2

〉
(nlm)

+ 2V0

〈
s2

(1− s)3

〉
(nlm)

+ 8V ′0δ

〈
s3

(1− s)4

〉
(nlm)


The new relativistic energy in Eq. (4.2) is reduced to the new energy Emp

r-nc (n, δ, V0, V
′
0 ,Θ, σ, χ, j, l, s,m) under the

modi�ed equal scalar and vector new Manning�Rosen potential in RNCQM, as follows:

Ecyp
r-nc (n, δ, V0, V

′
0 ,Θ, σ, χ,Θ, σ, χ, j, l, s,m) = Ecyp

nl +

[
〈Ξ〉RCYP

(nlm) (n, δ, V0, V
′
0)

(Θk (j, l, s) + σBm+mχΩm)

]1/2

.

Making the corresponding parameter replacements in Eq. (2.8), we obtain the energy equation for the class of
Yukawa potentials in the Klein�Gordon theory with equally mixed potentials, in RQM symmetries as:

M2 − Ecyp2
nl = δ2


(Ecyp

nl +M)V0−l(l+1)−1/2

n+1/2+
√

1/4+l(l+1)

−n(n+1)−(2n+1)
√

1/4+l(l+1)

n+1/2+
√

1/4+l(l+1)


2

.

V. NONRELATIVISTIC SPECTRUM UNDER DVSMCY-Ps

In this section, we want to derive the nonrelativistic spectrum, which is produced with the e�ect of the deformed
Manning�Rosen plus a class of Yukawa potentials for the diatomic molecules such as HCl, CH, LiH, and CO.
From Eq. (1.1), we can write the modi�ed Manning�Rosen plus a class of Yukawa potentials in the nonrelativistic
noncommutative three-dimensional real space NRNCQM symmetries as follows:

V mcy
nc (r) =

1

2Mb2

[
η (η − 1) e−2r/b(

1− e−r/b
)2 − Ae−r/b

1− e−r/b

]
− V0e

−δr

r
− V ′0e

−2δr

r2
+ V mcy

nr-pert (r) , (5.1)

where V mcy
pert (r) is the perturbative potential in nonrelativistic noncommutative three-dimensional real space

NRNCQM symmetries:

V mcy
nr-pert (r) =

l (l + 1)

r4
LΘ− ∂V mcy

nc (r)

∂r

LΘ

2r
+O

(
Θ2
)
. (5.2)

The �rst term is due to the centrifugal term l(l+1)
r2nc

in NRNCQM [Eq. (3.7)], which equals the usual centrifugal

term l(l+1)
r2 plus the perturbative centrifugal term l(l+1)

r4 LΘ, while the second term in Eq. (5.2) is produced with the
e�ect of the deformed Manning�Rosen plus a class of Yukawa potentials. We have applied the approximations type
suggested by Greene and Aldrich and Dong et al. to a short-range potential that is an excellent approximation to the
centrifugal term for the Manning�Rosen plus a class of Yukawa potentials, and we calculate ∂V mcy

nc (r)
∂r [see Eq. (3.18)].
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Now, substituting Eq. (3.16) into Eq. (5.2) we apply the approximation to Eq. (3.12), and we get the perturbative
potential in NRNCQM symmetries as follows:

V mcy
nr-pert (r) =

16δ4l (l + 1) s2

(1− s)4 LΘ (5.3)

− δ

(
λ1

s5/2

(1− s)3 + λ2
s7/2

(1− s)4 + λ3
s3/2

(1− s)2 + λ4
s2

(1− s)3 + λ5
s3

(1− s)4

)
LΘ +O

(
Θ2
)
.

Thus, we need to know the expectation values of s2

(1−s)4 ,
s5/2

(1−s)3 ,
s7/2

(1−s)4 ,
s3/2

(1−s)2 ,
s2

(1−s)3 , and
s3

(1−s)4 to �nd the

nonrelativistic energy corrections produced with the perturbative potential V mcy
nr-pert (r). By using the expectations

values obtained in Eqs. (3.32)�(3.37) for the n
th excited state we get the corresponding global expectation values

〈Ξ〉NRMCY
(nlm) (n, δ, η, b, A, V0, V

′
0) as follows:

〈Ξ〉NRMCY
(nlm) (n, δ, η, b, A, V0, V

′
0) = 16δ4l (l + 1)

〈
s2

(1− s)4

〉
(nlm)

−δ

λ1

〈
s5/2

(1− s)3

〉
(nlm)

+ λ2

〈
s7/2

(1− s)4

〉
(nlm)

 (5.4)

−δ

+λ3

〈
s3/2

(1− s)2

〉
(nlm)

+ λ4

〈
s2

(1− s)3

〉
(nlm)

+ λ5

〈
s3

(1− s)4

〉
(nlm)

 .

By following the same physical methodology that we used in our previous relativistic study, we obtain the energy
corrections ∆Enr

mcy (n, δ, η, b, A, V0, V
′
0 ,Θ, σ, χ, j, l, s,m) for the n

th excited state due to the spin-orbit complying, the
modi�ed Zeeman e�ect, and the nonrelativistic perturbed Fermi gas potential, which is induced by the in�uence of
DVSMCY-Ps in NRNCQM symmetries, as follows:

∆Enr
mcy (n, δ, η, b, A, V0, V

′
0 ,Θ, σ, χ, j, l, s,m) (5.5)

= 〈Ξ〉NRMCY
(nlm) (n, δ, η, b, AV0, V

′
0) (Θk (j, l, s) + σB +mχΩm) .

As a direct consequence, the new nonrelativistic energy Emcy
nr-nc (n, δ, η, b, A, V0, V

′
0 ,Θ, σ, χ, j, l, s,m) produced with

DVSMCY-Ps, in the symmetries of NRNCQM, corresponding the generalized excited states; the sum of the energy
corrections ∆Enr

mcy (n, δ, η, b, A, V0, V
′
0 ,Θ, σ, χ, j, l, s,m) plus the nonrelativistic energy Enr

nl produced with the main
part of potential in Eq. (1.1) in NRQM are as follows:

Emcy
r-nc (n, δ, η, b, A, V0, V

′
0 ,Θ, σ, χ, j, l, s,m) (5.6)

= Enr
nl + 〈Ξ〉NRMCY

(nlm) (n, δ, η, b, AV0, V
′
0) (Θk (j, l, s) + σB +mχΩm) .

The nonrelativistic energy Enr
nl due to the e�ect of the Manning�Rosen plus a class of Yukawa potentials in NRQM

is determined directly from the study of B. I. Ita et al. [89] given by:

Enr
nl = −α

2

2

(
2µV0

α
− (l + 1/2)

2

[
2 (l + 1/2)

2 − 2µC

α2
+ (n+ 1/2)

2 − 2µV0

α
− 2µV1

α
+ (2n+ 1) τ

]2
)

(5.7)
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With τ =
√

(l + 1/2)
2 − 2µC

α2 − 2µV0

α − 2µV1

α , α → δ,
V0 → 0, D → −η (η − 1), V2 → V ′0 , C → A and V1 → V0

to match the notations used in the two references are
identical.
Now, considering composite systems such as molecules

made of N = 2 particles of masses mn (n = 1, 2) within
the frame of noncommutative algebra, it is worth taking
into account features of descriptions of the systems in
the space. In NRQM symmetries, it was obtained that
composite systems with di�erent masses are described
with di�erent noncommutative parameters [90�93]:[

x̂S
µ
∗,x̂S
ν

]
=
[
x̂H
µ
∗,x̂H
ν

]
=
[
x̂I
µ
∗,x̂I
ν

]
= iθcµν ,

where the noncommutativity parameter θcµν is given by:

θcµν =

2∑
n=1

µ2
nθ

(n)
µν (5.8)

with µn = mn∑
n
mn

, the indices (n = 1,2) label the parti-

cles, and θ
(n)
µν is the parameter of noncommutativity,

corresponding to the particle of mass mn. Note that
in the case of a system of two particles with the same
mass m1 = m2 such as the homogeneous (N2 and I2)
diatomic molecules, the parameter θ(n)

µν = θµν . Thus, the
two parameters Θ and σ which appears in Eq. (5.8) are
changed to the new form:



Θc2 =

(
2∑

n=1
µ2
nΘ

(n)
12

)2

+

(
2∑

n=1
µ2
nΘ

(n)
23

)2

+

(
2∑

n=1
µ2
nΘ

(n)
13

)2

σc2 =

(
2∑

n=1
µ2
nσ

(n)
12

)2

+

(
2∑

n=1
µ2
nσ

(n)
23

)2

+

(
2∑

n=1
µ2
nσ

(n)
13

)2

χc2 =

(
2∑

n=1
µχ

(n)
12

)2

+

(
2∑

n=1
µχ

(n)
23

)2

+

(
2∑

n=1
µχ

(n)
13

)2

. (5.9)

As is mentioned above, in the case of a system
of two particles with the same mass m1 = m2

such as the homogeneous (N2 and I2) diatomic
molecules Θ

(n)
µν = Θµν and σ

(n)
µν = σµν . Finally,

we can generalize the nonrelativistic global energy
E

mcy
r-nc (n, δ, η, b, A, V0, V

′
0 , j, l, s,m) under the modi�ed

Morse potential considering that composite systems
with di�erent masses are described with di�erent
noncommutative parameters for the diatomic (HCl, CH,
LiH, and CO) as:

Emcy
r-nc (n, δ, η, b, A, V0, V

′
0 , j, l, s,m) (5.10)

= Enr
nl + 〈Ξ〉NRMCY

(nlm) (n, δ, η, b, AV0, V
′
0)

× (Θck (j, l, s) + σcB +mχcΩm) .

The KGE is the most well-known relativistic wave
equation describing spin-zero particles, but its extensi-
on in RNCQM symmetries, DKGE, under the modi�ed
Manning�Rosen plus a class of Yukawa potentials model
has a physical behavior similar to the Du�n�Kemmer
equation for meson with spin-1; it can describe a dynamic
state of a particle with spin one in the symmetries of
relativistic noncommutative quantum mechanics. This is
one of the most important new results of this research. It
is worth mentioning that for the two simultaneous limits
(Θ, σ, χ) and (Θc, σc, χc)→ (0, 0), we recover the results
of the in Refs. [32, 90].

VI. SUMMARY AND CONCLUSION

In this work, we have found approximate bound state
solutions of DRKGE and DNRSE using the tool of
Bopp's shift and standard perturbation theory methods
of the deformed equal vector scalar Manning�Rosen
plus a class of Yukawa potentials in both relativistic
and nonrelativistic regimes, which correspond to hi-
gh and low energy physics. We have employed the
improved approximation scheme to deal with the centri-
fugal term to obtain the new relativistic bound state
solutions Emcy

r-nc (n, δ, η, b, A, V0, V
′
0 ,Θ, σ, χ, j, l, s,m)

corresponding to the generalized excited states
that appear as a sum of the total shift energy
∆Etot

mcy (n, δ, η, b, A, V0, V
′
0 ,Θ, σ, χ, j, l, s,m) and the

relativistic energy Enl of the equal vector scalar
Manning�Rosen plus a class of Yukawa potentials.
Furthermore, we have obtained the new nonrelativistic
global energy of some diatomic molecules, such as N2,
I2, HCl, CH, LiH, and CO, in NRNCQM symmetries as
a sum of the nonrelativistic energy and the perturbative
corrections. The total shift energy and the perturbative
corrections appear as a function of the discreet atomic
quantum numbers (n, j, l, s,m), the potential parameters
(δ, η, b, A, V0, V

′
0) in addition to three noncommutativity

parameters (Θ, σ, χ). This behavior is similar to the
perturbed both modi�ed Zeeman e�ect and modi�ed
perturbed spin-orbit coupling in which an external
magnetic �eld is applied to the system and the spin-
orbit couplings which are generated with the e�ect of
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the perturbed e�ective potential in the symmetries of
RNCQM and NRNCQM. Furthermore, we can conclude
that the DKGE under the DVSMCY-Ps model becomes
similar to the Du�n�Kemmer equation for meson with
spin-1; it can describe a dynamic state of a particle with
spin one in the symmetries of RNCQM. Furthermore,
we have applied our results to composite systems
such as molecules made of N = 2 particles of masses
mn (n = 1, 2). It is worth mentioning that, for all cases,
when to make the two simultaneous limits (Θ, σ, χ) and

(Θc, σc, χc) → (0, 0, 0), the ordinary physical quantities
are recovered. Furthermore, our research �ndings could
also be applied in atomic physics, vibrational and
rotational spectroscopy, mass spectra, nuclear physics,
and other applications. Finally, given the e�ectiveness
of the methods that we followed in achieving our goal in
this research, we advise researchers to apply the same
methods to delve more deeply, both into the relativistic
and nonrelativistic regimes for others potentials.
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Àáäåëüìàäæiä Ìàéðåø
Ëàáîðàòîðiÿ ôiçèêè òà õiìi¨ ìàòåðiàëiâ, ôiçè÷íå âiääiëåííÿ,
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Ó öié ðîáîòi ìè âèêîðèñòàëè åëå àíòíèé iíñòðóìåíò çñóâó Áîïïà òà ñòàíäàðòíi ìåòîäè òåî-
ði¨ çáóðåíü äëÿ îòðèìàííÿ íîâîãî ðåëÿòèâiñòñüêîãî é íåðåëÿòèâiñòñüêîãî íàáëèæåíîãî ðîçâ'ÿçêó
çâ'ÿçàíèõ ñòàíiâ äåôîðìîâàíèõ ðiâíÿíü Êëÿéíà��îðäîíà òà Øðåäèí åðà ç âèêîðèñòàííÿì ìî-
äèôiêîâàíèõ âåêòîðíîãî i ñêàëÿðíîãî ïîòåíöiàëiâ Ìåííií à�Ðîçåíà ïëþñ êëàñ ïîòåíöiàëiâ Þêà-
âè (ñêîðî÷åíî DVSMCY-Ps). Êðiì òîãî, ìè çàñòîñóâàëè ïîëiïøåíå íàáëèæåííÿ äî âiäöåíòðîâî-
ãî ÷ëåíà äëÿ äåÿêèõ âèáðàíèõ äâîàòîìíèõ ìîëåêóë, ÿê-îò: N2, I2, HCl, CH, LiH òà CO, ó ñèìå-
òðiÿõ ðîçøèðåíî¨ êâàíòîâî¨ ìåõàíiêè äëÿ îòðèìàííÿ íàáëèæåíèõ ðîçâ'ÿçêiâ. Åíåð iÿ ðåëÿòèâiñò-
ñüêîãî çñóâó ∆Etot

mcy (n, δ, η, b, A, V0, V
′
0 ,Θ, σ, χ, j, l, s,m) òà ïåðòóðáàòèâíi íåðåëÿòèâiñòñüêi ïîïðàâêè

∆Enr
mcy (n, δ, η, b, A, V0, V

′
0 ,Θ, σ, χ, j, l, s,m) âèÿëÿþòüñÿ ôóíêöiÿìè ïàðàìåòðiâ (δ, η, b, A, V0, V

′
0), ïàðà-

ìåòðiâ íåêîìóòàòèâíîñòi (Θ, σ, χ), íà äîäàòîê äî àòîìíèõ êâàíòîâèõ ÷èñåë (n, j, l, s,m). I â ðåëÿòè-
âiñòñüêèõ, i â íåðåëÿòèâiñòñüêèõ çàäà÷àõ ìè ïîêàçó¹ìî, ùî ïîïðàâêè íà åíåð iþ ñïåêòðà ìåíøi çà
îñíîâíó â çâè÷àéíèõ âèïàäêàõ ðåëÿòèâiñòñüêî¨ òà íåðåëÿòèâiñòñüêî¨ êâàíòîâî¨ ìåõàíiêè. Ó ãðàíèöi
çâè÷àéíî¨ êâàíòîâî¨ ìåõàíiêè íàøi ðåçóëüòàòè äëÿ DVSMCY-Ps óçãîäæóþòüñÿ ç òèì, ùî îòðèìà-
íî â ëiòåðàòóði. Ó íîâèõ ñèìåòðiÿõ íåêîìóòàòèâíî¨ êâàíòîâî¨ ìåõàíiêè íåìîæëèâî îäåðæàòè òî÷íi
àíàëiòè÷íi ðîçâ'ÿçêè äëÿ l = 0, à l neq0 ìîæíà ðîçâ'ÿçàòè ëèøå ïðèáëèçíî. Ìè ïîìiòèëè, ùî äå-
ôîðìîâàíå ðiâíÿííÿ Êëÿéíà��îðäîíà ç ìîäåëëþ DVSMCY-Ps ìà¹ ôiçè÷íó ïîâåäiíêó, ïîäiáíó äî
ðiâíÿííÿ Äàôôiíà�Êåììåðà äëÿ ìåçîíà çi ñïiíîì 1, âîíî ìîæå îïèñóâàòè äèíàìi÷íèé ñòàí ÷àñòèíêè
çi ñïiíîì 1 ó ñèìåòðiÿõ ðåëÿòèâiñòñüêî¨ íåêîìóòàòèâíî¨ êâàíòîâî¨ ìåõàíiêè.

Êëþ÷îâi ñëîâà: ðiâíÿííÿ Êëÿéíà��îðäîíà, ðiâíÿííÿØðåäèí åðà, ïîòåíöiàë Ìàííií à�Ðîçåíà,
êëàñ ïîòåíöiàëiâ Þêàâè, äâîàòîìíi ìîëåêóëè, íåêîìóòàòèâíà ãåîìåòðiÿ, ìåòîä çñóâó Áîïïà òà çið-
êîâi äîáóòêè.
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